Metamath Proof Explorer


Theorem xrninxpex

Description: Sufficient condition for the intersection of a range Cartesian product with a Cartesian product to be a set. (Contributed by Peter Mazsa, 12-Apr-2020)

Ref Expression
Assertion xrninxpex
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) e. _V )

Proof

Step Hyp Ref Expression
1 xpexg
 |-  ( ( B e. W /\ C e. X ) -> ( B X. C ) e. _V )
2 inxpex
 |-  ( ( ( R |X. S ) e. _V \/ ( A e. V /\ ( B X. C ) e. _V ) ) -> ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) e. _V )
3 2 olcs
 |-  ( ( A e. V /\ ( B X. C ) e. _V ) -> ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) e. _V )
4 1 3 sylan2
 |-  ( ( A e. V /\ ( B e. W /\ C e. X ) ) -> ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) e. _V )
5 4 3impb
 |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) e. _V )