Metamath Proof Explorer


Theorem xrninxpex

Description: Sufficient condition for the intersection of a range Cartesian product with a Cartesian product to be a set. (Contributed by Peter Mazsa, 12-Apr-2020)

Ref Expression
Assertion xrninxpex ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ( 𝑅𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) ∈ V )

Proof

Step Hyp Ref Expression
1 xpexg ( ( 𝐵𝑊𝐶𝑋 ) → ( 𝐵 × 𝐶 ) ∈ V )
2 inxpex ( ( ( 𝑅𝑆 ) ∈ V ∨ ( 𝐴𝑉 ∧ ( 𝐵 × 𝐶 ) ∈ V ) ) → ( ( 𝑅𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) ∈ V )
3 2 olcs ( ( 𝐴𝑉 ∧ ( 𝐵 × 𝐶 ) ∈ V ) → ( ( 𝑅𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) ∈ V )
4 1 3 sylan2 ( ( 𝐴𝑉 ∧ ( 𝐵𝑊𝐶𝑋 ) ) → ( ( 𝑅𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) ∈ V )
5 4 3impb ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ( 𝑅𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) ∈ V )