Metamath Proof Explorer


Theorem xrninxpex

Description: Sufficient condition for the intersection of a range Cartesian product with a Cartesian product to be a set. (Contributed by Peter Mazsa, 12-Apr-2020)

Ref Expression
Assertion xrninxpex A V B W C X R S A × B × C V

Proof

Step Hyp Ref Expression
1 xpexg B W C X B × C V
2 inxpex R S V A V B × C V R S A × B × C V
3 2 olcs A V B × C V R S A × B × C V
4 1 3 sylan2 A V B W C X R S A × B × C V
5 4 3impb A V B W C X R S A × B × C V