Metamath Proof Explorer


Theorem zexpscl

Description: Closure law for surreal integer exponentiation. (Contributed by Scott Fenton, 11-Dec-2025)

Ref Expression
Assertion zexpscl Could not format assertion : No typesetting found for |- ( ( A e. ZZ_s /\ N e. NN0_s ) -> ( A ^su N ) e. ZZ_s ) with typecode |-

Proof

Step Hyp Ref Expression
1 zssno s No
2 simpl x s y s x s
3 simpr x s y s y s
4 2 3 zmulscld x s y s x s y s
5 1zs 1 s s
6 1 4 5 expscllem Could not format ( ( A e. ZZ_s /\ N e. NN0_s ) -> ( A ^su N ) e. ZZ_s ) : No typesetting found for |- ( ( A e. ZZ_s /\ N e. NN0_s ) -> ( A ^su N ) e. ZZ_s ) with typecode |-