Metamath Proof Explorer


Theorem zfauscl

Description: Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep , we invoke the Axiom of Extensionality (indirectly via vtocl ), which is needed for the justification of class variable notation.

If we omit the requirement that y not occur in ph , we can derive a contradiction, as notzfaus shows. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis zfauscl.1 AV
Assertion zfauscl yxxyxAφ

Proof

Step Hyp Ref Expression
1 zfauscl.1 AV
2 eleq2 z=AxzxA
3 2 anbi1d z=AxzφxAφ
4 3 bibi2d z=AxyxzφxyxAφ
5 4 albidv z=AxxyxzφxxyxAφ
6 5 exbidv z=AyxxyxzφyxxyxAφ
7 ax-sep yxxyxzφ
8 1 6 7 vtocl yxxyxAφ