Metamath Proof Explorer


Theorem zfcndpow

Description: Axiom of Power Sets ax-pow , reproved from conditionless ZFC axioms. The proof uses the "Axiom of Twoness" dtru . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Aug-2003) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion zfcndpow yzwwzwxzy

Proof

Step Hyp Ref Expression
1 dtru ¬yy=z
2 exnal y¬y=z¬yy=z
3 1 2 mpbir y¬y=z
4 nfe1 yyzyxyzzyxzy
5 axpownd ¬y=zyzyxyzzyxzy
6 4 5 exlimi y¬y=zyzyxyzzyxzy
7 3 6 ax-mp yzyxyzzyxzy
8 19.9v xyzyz
9 19.3v zyxyx
10 8 9 imbi12i xyzzyxyzyx
11 10 albii yxyzzyxyyzyx
12 11 imbi1i yxyzzyxzyyyzyxzy
13 12 albii zyxyzzyxzyzyyzyxzy
14 13 exbii yzyxyzzyxzyyzyyzyxzy
15 7 14 mpbi yzyyzyxzy
16 elequ1 w=ywzyz
17 elequ1 w=ywxyx
18 16 17 imbi12d w=ywzwxyzyx
19 18 cbvalvw wwzwxyyzyx
20 19 imbi1i wwzwxzyyyzyxzy
21 20 albii zwwzwxzyzyyzyxzy
22 21 exbii yzwwzwxzyyzyyzyxzy
23 15 22 mpbir yzwwzwxzy