Description: Axiom of Power Sets ax-pow , reproved from conditionless ZFC axioms. The proof uses the "Axiom of Twoness" dtru . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Aug-2003) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | zfcndpow | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtru | |
|
2 | exnal | |
|
3 | 1 2 | mpbir | |
4 | nfe1 | |
|
5 | axpownd | |
|
6 | 4 5 | exlimi | |
7 | 3 6 | ax-mp | |
8 | 19.9v | |
|
9 | 19.3v | |
|
10 | 8 9 | imbi12i | |
11 | 10 | albii | |
12 | 11 | imbi1i | |
13 | 12 | albii | |
14 | 13 | exbii | |
15 | 7 14 | mpbi | |
16 | elequ1 | |
|
17 | elequ1 | |
|
18 | 16 17 | imbi12d | |
19 | 18 | cbvalvw | |
20 | 19 | imbi1i | |
21 | 20 | albii | |
22 | 21 | exbii | |
23 | 15 22 | mpbir | |