| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dtru | ⊢ ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 2 |  | exnal | ⊢ ( ∃ 𝑦 ¬  𝑦  =  𝑧  ↔  ¬  ∀ 𝑦 𝑦  =  𝑧 ) | 
						
							| 3 | 1 2 | mpbir | ⊢ ∃ 𝑦 ¬  𝑦  =  𝑧 | 
						
							| 4 |  | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( ∃ 𝑥 𝑦  ∈  𝑧  →  ∀ 𝑧 𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) | 
						
							| 5 |  | axpownd | ⊢ ( ¬  𝑦  =  𝑧  →  ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( ∃ 𝑥 𝑦  ∈  𝑧  →  ∀ 𝑧 𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) ) | 
						
							| 6 | 4 5 | exlimi | ⊢ ( ∃ 𝑦 ¬  𝑦  =  𝑧  →  ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( ∃ 𝑥 𝑦  ∈  𝑧  →  ∀ 𝑧 𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) ) | 
						
							| 7 | 3 6 | ax-mp | ⊢ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( ∃ 𝑥 𝑦  ∈  𝑧  →  ∀ 𝑧 𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) | 
						
							| 8 |  | 19.9v | ⊢ ( ∃ 𝑥 𝑦  ∈  𝑧  ↔  𝑦  ∈  𝑧 ) | 
						
							| 9 |  | 19.3v | ⊢ ( ∀ 𝑧 𝑦  ∈  𝑥  ↔  𝑦  ∈  𝑥 ) | 
						
							| 10 | 8 9 | imbi12i | ⊢ ( ( ∃ 𝑥 𝑦  ∈  𝑧  →  ∀ 𝑧 𝑦  ∈  𝑥 )  ↔  ( 𝑦  ∈  𝑧  →  𝑦  ∈  𝑥 ) ) | 
						
							| 11 | 10 | albii | ⊢ ( ∀ 𝑦 ( ∃ 𝑥 𝑦  ∈  𝑧  →  ∀ 𝑧 𝑦  ∈  𝑥 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑧  →  𝑦  ∈  𝑥 ) ) | 
						
							| 12 | 11 | imbi1i | ⊢ ( ( ∀ 𝑦 ( ∃ 𝑥 𝑦  ∈  𝑧  →  ∀ 𝑧 𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 )  ↔  ( ∀ 𝑦 ( 𝑦  ∈  𝑧  →  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) ) | 
						
							| 13 | 12 | albii | ⊢ ( ∀ 𝑧 ( ∀ 𝑦 ( ∃ 𝑥 𝑦  ∈  𝑧  →  ∀ 𝑧 𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 )  ↔  ∀ 𝑧 ( ∀ 𝑦 ( 𝑦  ∈  𝑧  →  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) ) | 
						
							| 14 | 13 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( ∃ 𝑥 𝑦  ∈  𝑧  →  ∀ 𝑧 𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 )  ↔  ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( 𝑦  ∈  𝑧  →  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) ) | 
						
							| 15 | 7 14 | mpbi | ⊢ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( 𝑦  ∈  𝑧  →  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) | 
						
							| 16 |  | elequ1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ∈  𝑧  ↔  𝑦  ∈  𝑧 ) ) | 
						
							| 17 |  | elequ1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ∈  𝑥  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 18 | 16 17 | imbi12d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑥 )  ↔  ( 𝑦  ∈  𝑧  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 19 | 18 | cbvalvw | ⊢ ( ∀ 𝑤 ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑥 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑧  →  𝑦  ∈  𝑥 ) ) | 
						
							| 20 | 19 | imbi1i | ⊢ ( ( ∀ 𝑤 ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑥 )  →  𝑧  ∈  𝑦 )  ↔  ( ∀ 𝑦 ( 𝑦  ∈  𝑧  →  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) ) | 
						
							| 21 | 20 | albii | ⊢ ( ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑥 )  →  𝑧  ∈  𝑦 )  ↔  ∀ 𝑧 ( ∀ 𝑦 ( 𝑦  ∈  𝑧  →  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) ) | 
						
							| 22 | 21 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑥 )  →  𝑧  ∈  𝑦 )  ↔  ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( 𝑦  ∈  𝑧  →  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) ) | 
						
							| 23 | 15 22 | mpbir | ⊢ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) |