| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axpowndlem4 | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) ) | 
						
							| 2 |  | axpowndlem1 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 3 | 2 | aecoms | ⊢ ( ∀ 𝑦 𝑦  =  𝑥  →  ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 4 | 2 | a1d | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑦 𝑦  =  𝑧  →  ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) ) | 
						
							| 5 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 6 |  | nfae | ⊢ Ⅎ 𝑦 ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 7 | 5 6 | nfan | ⊢ Ⅎ 𝑦 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑦 𝑦  =  𝑧 ) | 
						
							| 8 |  | el | ⊢ ∃ 𝑤 𝑥  ∈  𝑤 | 
						
							| 9 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 10 |  | nfcvd | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 𝑤 ) | 
						
							| 11 | 9 10 | nfeld | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 𝑥  ∈  𝑤 ) | 
						
							| 12 |  | elequ2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑥  ∈  𝑤  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 13 | 12 | a1i | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( 𝑤  =  𝑦  →  ( 𝑥  ∈  𝑤  ↔  𝑥  ∈  𝑦 ) ) ) | 
						
							| 14 | 5 11 13 | cbvexd | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∃ 𝑤 𝑥  ∈  𝑤  ↔  ∃ 𝑦 𝑥  ∈  𝑦 ) ) | 
						
							| 15 | 8 14 | mpbii | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ∃ 𝑦 𝑥  ∈  𝑦 ) | 
						
							| 16 | 15 | 19.8ad | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ∃ 𝑥 ∃ 𝑦 𝑥  ∈  𝑦 ) | 
						
							| 17 |  | df-ex | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝑥  ∈  𝑦  ↔  ¬  ∀ 𝑥 ¬  ∃ 𝑦 𝑥  ∈  𝑦 ) | 
						
							| 18 | 16 17 | sylib | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ¬  ∀ 𝑥 ¬  ∃ 𝑦 𝑥  ∈  𝑦 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑦 𝑦  =  𝑧 )  →  ¬  ∀ 𝑥 ¬  ∃ 𝑦 𝑥  ∈  𝑦 ) | 
						
							| 20 |  | biidd | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ¬  𝑥  ∈  𝑦  ↔  ¬  𝑥  ∈  𝑦 ) ) | 
						
							| 21 | 20 | dral1 | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑦 ¬  𝑥  ∈  𝑦  ↔  ∀ 𝑧 ¬  𝑥  ∈  𝑦 ) ) | 
						
							| 22 |  | alnex | ⊢ ( ∀ 𝑦 ¬  𝑥  ∈  𝑦  ↔  ¬  ∃ 𝑦 𝑥  ∈  𝑦 ) | 
						
							| 23 |  | alnex | ⊢ ( ∀ 𝑧 ¬  𝑥  ∈  𝑦  ↔  ¬  ∃ 𝑧 𝑥  ∈  𝑦 ) | 
						
							| 24 | 21 22 23 | 3bitr3g | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ¬  ∃ 𝑦 𝑥  ∈  𝑦  ↔  ¬  ∃ 𝑧 𝑥  ∈  𝑦 ) ) | 
						
							| 25 |  | nd2 | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ¬  ∀ 𝑦 𝑥  ∈  𝑧 ) | 
						
							| 26 |  | mtt | ⊢ ( ¬  ∀ 𝑦 𝑥  ∈  𝑧  →  ( ¬  ∃ 𝑧 𝑥  ∈  𝑦  ↔  ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 ) ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ¬  ∃ 𝑧 𝑥  ∈  𝑦  ↔  ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 ) ) ) | 
						
							| 28 | 24 27 | bitrd | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ¬  ∃ 𝑦 𝑥  ∈  𝑦  ↔  ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 ) ) ) | 
						
							| 29 | 28 | dral2 | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑥 ¬  ∃ 𝑦 𝑥  ∈  𝑦  ↔  ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 ) ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑦 𝑦  =  𝑧 )  →  ( ∀ 𝑥 ¬  ∃ 𝑦 𝑥  ∈  𝑦  ↔  ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 ) ) ) | 
						
							| 31 | 19 30 | mtbid | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑦 𝑦  =  𝑧 )  →  ¬  ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 ) ) | 
						
							| 32 | 31 | pm2.21d | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑦 𝑦  =  𝑧 )  →  ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 33 | 7 32 | alrimi | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑦 𝑦  =  𝑧 )  →  ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 34 | 33 | 19.8ad | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑦 𝑦  =  𝑧 )  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 35 | 34 | a1d | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑦 𝑦  =  𝑧 )  →  ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 36 | 35 | ex | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑦 𝑦  =  𝑧  →  ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) ) | 
						
							| 37 | 4 36 | pm2.61i | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 38 | 1 3 37 | pm2.61ii | ⊢ ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) |