| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axpowndlem3 |
⊢ ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
| 2 |
1
|
ax-gen |
⊢ ∀ 𝑤 ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
| 3 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑥 |
| 4 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 5 |
3 4
|
nfan |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 6 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ) |
| 7 |
6
|
adantr |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ) |
| 8 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ) |
| 9 |
7 8
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 = 𝑤 ) |
| 10 |
9
|
nfnd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ¬ 𝑥 = 𝑤 ) |
| 11 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑥 |
| 12 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 13 |
11 12
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 14 |
|
nfv |
⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 15 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑥 |
| 16 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 17 |
15 16
|
nfan |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 18 |
7 8
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ∈ 𝑤 ) |
| 19 |
17 18
|
nfexd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∃ 𝑧 𝑥 ∈ 𝑤 ) |
| 20 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑧 ) |
| 21 |
20
|
adantl |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧 ) |
| 22 |
7 21
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ∈ 𝑧 ) |
| 23 |
14 22
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑤 𝑥 ∈ 𝑧 ) |
| 24 |
19 23
|
nfimd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) ) |
| 25 |
13 24
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) ) |
| 26 |
8 7
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ∈ 𝑥 ) |
| 27 |
25 26
|
nfimd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
| 28 |
14 27
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
| 29 |
13 28
|
nfexd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
| 30 |
10 29
|
nfimd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) ) |
| 31 |
|
equequ2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) |
| 32 |
31
|
notbid |
⊢ ( 𝑤 = 𝑦 → ( ¬ 𝑥 = 𝑤 ↔ ¬ 𝑥 = 𝑦 ) ) |
| 33 |
32
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ¬ 𝑥 = 𝑤 ↔ ¬ 𝑥 = 𝑦 ) ) |
| 34 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑤 ) |
| 35 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑥 𝑦 ) |
| 36 |
35
|
adantr |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
| 37 |
34 36
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑤 = 𝑦 ) |
| 38 |
13 37
|
nfan1 |
⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) |
| 39 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑤 ) |
| 40 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑦 ) |
| 41 |
40
|
adantl |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑦 ) |
| 42 |
39 41
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑤 = 𝑦 ) |
| 43 |
17 42
|
nfan1 |
⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) |
| 44 |
|
elequ2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) |
| 45 |
44
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) |
| 46 |
43 45
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑧 𝑥 ∈ 𝑤 ↔ ∃ 𝑧 𝑥 ∈ 𝑦 ) ) |
| 47 |
|
biidd |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) |
| 48 |
47
|
a1i |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) ) |
| 49 |
5 22 48
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 𝑥 ∈ 𝑧 ↔ ∀ 𝑦 𝑥 ∈ 𝑧 ) ) |
| 50 |
49
|
adantr |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑤 𝑥 ∈ 𝑧 ↔ ∀ 𝑦 𝑥 ∈ 𝑧 ) ) |
| 51 |
46 50
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) ↔ ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 52 |
38 51
|
albid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) ↔ ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 53 |
|
elequ1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
| 54 |
53
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
| 55 |
52 54
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 56 |
55
|
ex |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 57 |
5 27 56
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 58 |
13 57
|
exbid |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 59 |
58
|
adantr |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 60 |
33 59
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) ↔ ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 61 |
60
|
ex |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) ↔ ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) ) |
| 62 |
5 30 61
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 63 |
2 62
|
mpbii |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∀ 𝑦 ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 64 |
63
|
19.21bi |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 65 |
64
|
ex |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |