Metamath Proof Explorer


Theorem zncrng

Description: Z/nZ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis zncrng.y Y=/N
Assertion zncrng N0YCRing

Proof

Step Hyp Ref Expression
1 zncrng.y Y=/N
2 nn0z N0N
3 eqid RSpanring=RSpanring
4 eqid ring/𝑠ring~QGRSpanringN=ring/𝑠ring~QGRSpanringN
5 3 4 zncrng2 Nring/𝑠ring~QGRSpanringNCRing
6 2 5 syl N0ring/𝑠ring~QGRSpanringNCRing
7 eqidd N0Basering/𝑠ring~QGRSpanringN=Basering/𝑠ring~QGRSpanringN
8 3 4 1 znbas2 N0Basering/𝑠ring~QGRSpanringN=BaseY
9 3 4 1 znadd N0+ring/𝑠ring~QGRSpanringN=+Y
10 9 oveqdr N0xBasering/𝑠ring~QGRSpanringNyBasering/𝑠ring~QGRSpanringNx+ring/𝑠ring~QGRSpanringNy=x+Yy
11 3 4 1 znmul N0ring/𝑠ring~QGRSpanringN=Y
12 11 oveqdr N0xBasering/𝑠ring~QGRSpanringNyBasering/𝑠ring~QGRSpanringNxring/𝑠ring~QGRSpanringNy=xYy
13 7 8 10 12 crngpropd N0ring/𝑠ring~QGRSpanringNCRingYCRing
14 6 13 mpbid N0YCRing