Metamath Proof Explorer


Theorem znzrhval

Description: The ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znzrh2.s S=RSpanring
znzrh2.r ˙=ring~QGSN
znzrh2.y Y=/N
znzrh2.2 L=ℤRHomY
Assertion znzrhval N0ALA=A˙

Proof

Step Hyp Ref Expression
1 znzrh2.s S=RSpanring
2 znzrh2.r ˙=ring~QGSN
3 znzrh2.y Y=/N
4 znzrh2.2 L=ℤRHomY
5 1 2 3 4 znzrh2 N0L=xx˙
6 5 fveq1d N0LA=xx˙A
7 eceq1 x=Ax˙=A˙
8 eqid xx˙=xx˙
9 2 ovexi ˙V
10 ecexg ˙VA˙V
11 9 10 ax-mp A˙V
12 7 8 11 fvmpt Axx˙A=A˙
13 6 12 sylan9eq N0ALA=A˙