Metamath Proof Explorer


Theorem znzrhval

Description: The ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znzrh2.s 𝑆 = ( RSpan ‘ ℤring )
znzrh2.r = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) )
znzrh2.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
znzrh2.2 𝐿 = ( ℤRHom ‘ 𝑌 )
Assertion znzrhval ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ) → ( 𝐿𝐴 ) = [ 𝐴 ] )

Proof

Step Hyp Ref Expression
1 znzrh2.s 𝑆 = ( RSpan ‘ ℤring )
2 znzrh2.r = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) )
3 znzrh2.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
4 znzrh2.2 𝐿 = ( ℤRHom ‘ 𝑌 )
5 1 2 3 4 znzrh2 ( 𝑁 ∈ ℕ0𝐿 = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) )
6 5 fveq1d ( 𝑁 ∈ ℕ0 → ( 𝐿𝐴 ) = ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) ‘ 𝐴 ) )
7 eceq1 ( 𝑥 = 𝐴 → [ 𝑥 ] = [ 𝐴 ] )
8 eqid ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] )
9 2 ovexi ∈ V
10 ecexg ( ∈ V → [ 𝐴 ] ∈ V )
11 9 10 ax-mp [ 𝐴 ] ∈ V
12 7 8 11 fvmpt ( 𝐴 ∈ ℤ → ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) ‘ 𝐴 ) = [ 𝐴 ] )
13 6 12 sylan9eq ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ) → ( 𝐿𝐴 ) = [ 𝐴 ] )