Metamath Proof Explorer


Theorem zs12ex

Description: The class of dyadic fractions is a set. (Contributed by Scott Fenton, 7-Aug-2025)

Ref Expression
Assertion zs12ex Could not format assertion : No typesetting found for |- ZZ_s[1/2] e. _V with typecode |-

Proof

Step Hyp Ref Expression
1 df-zs12 Could not format ZZ_s[1/2] = { x | E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) } : No typesetting found for |- ZZ_s[1/2] = { x | E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) } with typecode |-
2 zsex s V
3 n0sex 0s V
4 2 3 ab2rexex Could not format { x | E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) } e. _V : No typesetting found for |- { x | E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) } e. _V with typecode |-
5 1 4 eqeltri Could not format ZZ_s[1/2] e. _V : No typesetting found for |- ZZ_s[1/2] e. _V with typecode |-