Metamath Proof Explorer


Theorem 0cmp

Description: The singleton of the empty set is compact. (Contributed by FL, 2-Aug-2009)

Ref Expression
Assertion 0cmp { ∅ } ∈ Comp

Proof

Step Hyp Ref Expression
1 sn0top { ∅ } ∈ Top
2 snfi { ∅ } ∈ Fin
3 1 2 elini { ∅ } ∈ ( Top ∩ Fin )
4 fincmp ( { ∅ } ∈ ( Top ∩ Fin ) → { ∅ } ∈ Comp )
5 3 4 ax-mp { ∅ } ∈ Comp