Metamath Proof Explorer


Theorem 0cmp

Description: The singleton of the empty set is compact. (Contributed by FL, 2-Aug-2009)

Ref Expression
Assertion 0cmp Comp

Proof

Step Hyp Ref Expression
1 sn0top Top
2 snfi Fin
3 1 2 elini Top Fin
4 fincmp Top Fin Comp
5 3 4 ax-mp Comp