| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 2 |
1
|
0pth |
⊢ ( 𝐺 ∈ 𝑊 → ( ∅ ( Paths ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 3 |
2
|
anbi1d |
⊢ ( 𝐺 ∈ 𝑊 → ( ( ∅ ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) ) ↔ ( 𝑃 : ( 0 ... 0 ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) ) ) ) |
| 4 |
|
iscycl |
⊢ ( ∅ ( Cycles ‘ 𝐺 ) 𝑃 ↔ ( ∅ ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) ) ) |
| 5 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 6 |
5
|
eqcomi |
⊢ 0 = ( ♯ ‘ ∅ ) |
| 7 |
6
|
fveq2i |
⊢ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) |
| 8 |
7
|
biantru |
⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ ( Vtx ‘ 𝐺 ) ↔ ( 𝑃 : ( 0 ... 0 ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) ) ) |
| 9 |
3 4 8
|
3bitr4g |
⊢ ( 𝐺 ∈ 𝑊 → ( ∅ ( Cycles ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |