Metamath Proof Explorer


Theorem 0finon

Description: 0 is a finite ordinal. See peano1 . (Contributed by RP, 27-Sep-2023)

Ref Expression
Assertion 0finon ∅ ∈ ( On ∩ Fin )

Proof

Step Hyp Ref Expression
1 peano1 ∅ ∈ ω
2 onfin2 ω = ( On ∩ Fin )
3 1 2 eleqtri ∅ ∈ ( On ∩ Fin )