Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Notation hints
0heALT
Metamath Proof Explorer
Description: The empty relation is hereditary in any class. (Contributed by RP , 27-Mar-2020) (New usage is discouraged.)
(Proof modification is discouraged.)
Ref
Expression
Assertion
0heALT
⊢ ∅ hereditary 𝐴
Proof
Step
Hyp
Ref
Expression
1
xphe
⊢ ( ∅ × 𝐴 ) hereditary 𝐴
2
0xp
⊢ ( ∅ × 𝐴 ) = ∅
3
heeq1
⊢ ( ( ∅ × 𝐴 ) = ∅ → ( ( ∅ × 𝐴 ) hereditary 𝐴 ↔ ∅ hereditary 𝐴 ) )
4
2 3
ax-mp
⊢ ( ( ∅ × 𝐴 ) hereditary 𝐴 ↔ ∅ hereditary 𝐴 )
5
1 4
mpbi
⊢ ∅ hereditary 𝐴