Metamath Proof Explorer


Theorem 0noddALTV

Description: 0 is not an odd number. (Contributed by AV, 3-Feb-2020) (Revised by AV, 17-Jun-2020)

Ref Expression
Assertion 0noddALTV 0 ∉ Odd

Proof

Step Hyp Ref Expression
1 0evenALTV 0 ∈ Even
2 df-nel ( 0 ∉ Odd ↔ ¬ 0 ∈ Odd )
3 0z 0 ∈ ℤ
4 zeo2ALTV ( 0 ∈ ℤ → ( 0 ∈ Even ↔ ¬ 0 ∈ Odd ) )
5 4 bicomd ( 0 ∈ ℤ → ( ¬ 0 ∈ Odd ↔ 0 ∈ Even ) )
6 3 5 ax-mp ( ¬ 0 ∈ Odd ↔ 0 ∈ Even )
7 2 6 bitri ( 0 ∉ Odd ↔ 0 ∈ Even )
8 1 7 mpbir 0 ∉ Odd