Metamath Proof Explorer
		
		
		
		Description:  1 is an odd number.  (Contributed by AV, 3-Feb-2020)  (Revised by AV, 18-Jun-2020)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 1oddALTV | ⊢  1  ∈   Odd | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 2 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 3 | 2 | oveq1i | ⊢ ( ( 1  +  1 )  /  2 )  =  ( 2  /  2 ) | 
						
							| 4 |  | 2div2e1 | ⊢ ( 2  /  2 )  =  1 | 
						
							| 5 | 3 4 | eqtri | ⊢ ( ( 1  +  1 )  /  2 )  =  1 | 
						
							| 6 | 5 1 | eqeltri | ⊢ ( ( 1  +  1 )  /  2 )  ∈  ℤ | 
						
							| 7 |  | isodd | ⊢ ( 1  ∈   Odd   ↔  ( 1  ∈  ℤ  ∧  ( ( 1  +  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 8 | 1 6 7 | mpbir2an | ⊢ 1  ∈   Odd |