Metamath Proof Explorer
Description: 1 is an odd number. (Contributed by AV, 3-Feb-2020) (Revised by AV, 18-Jun-2020)
|
|
Ref |
Expression |
|
Assertion |
1oddALTV |
⊢ 1 ∈ Odd |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
⊢ 1 ∈ ℤ |
2 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
3 |
2
|
oveq1i |
⊢ ( ( 1 + 1 ) / 2 ) = ( 2 / 2 ) |
4 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
5 |
3 4
|
eqtri |
⊢ ( ( 1 + 1 ) / 2 ) = 1 |
6 |
5 1
|
eqeltri |
⊢ ( ( 1 + 1 ) / 2 ) ∈ ℤ |
7 |
|
isodd |
⊢ ( 1 ∈ Odd ↔ ( 1 ∈ ℤ ∧ ( ( 1 + 1 ) / 2 ) ∈ ℤ ) ) |
8 |
1 6 7
|
mpbir2an |
⊢ 1 ∈ Odd |