Metamath Proof Explorer


Theorem 1oddALTV

Description: 1 is an odd number. (Contributed by AV, 3-Feb-2020) (Revised by AV, 18-Jun-2020)

Ref Expression
Assertion 1oddALTV 1 Odd

Proof

Step Hyp Ref Expression
1 1z 1
2 1p1e2 1 + 1 = 2
3 2 oveq1i 1 + 1 2 = 2 2
4 2div2e1 2 2 = 1
5 3 4 eqtri 1 + 1 2 = 1
6 5 1 eqeltri 1 + 1 2
7 isodd 1 Odd 1 1 + 1 2
8 1 6 7 mpbir2an 1 Odd