Metamath Proof Explorer


Theorem 1oddALTV

Description: 1 is an odd number. (Contributed by AV, 3-Feb-2020) (Revised by AV, 18-Jun-2020)

Ref Expression
Assertion 1oddALTV 1Odd

Proof

Step Hyp Ref Expression
1 1z 1
2 1p1e2 1+1=2
3 2 oveq1i 1+12=22
4 2div2e1 22=1
5 3 4 eqtri 1+12=1
6 5 1 eqeltri 1+12
7 isodd 1Odd11+12
8 1 6 7 mpbir2an 1Odd