| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nonelaleb.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
0nonelaleb.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
0nonelaleb.3 |
⊢ ( 𝜑 → 0 < 𝐴 ) |
| 4 |
|
0nonelaleb.4 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 5 |
|
0nonelalab.5 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 6 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 7 |
|
elioore |
⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → 𝐶 ∈ ℝ ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 9 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 10 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 11 |
|
elioo2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 12 |
9 10 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 13 |
5 12
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) |
| 14 |
13
|
simp2d |
⊢ ( 𝜑 → 𝐴 < 𝐶 ) |
| 15 |
6 1 8 3 14
|
lttrd |
⊢ ( 𝜑 → 0 < 𝐶 ) |
| 16 |
6 15
|
ltned |
⊢ ( 𝜑 → 0 ≠ 𝐶 ) |