Metamath Proof Explorer


Theorem 0nonelalab

Description: Technical lemma for open interval. (Contributed by metakunt, 12-Aug-2024)

Ref Expression
Hypotheses 0nonelaleb.1
|- ( ph -> A e. RR )
0nonelaleb.2
|- ( ph -> B e. RR )
0nonelaleb.3
|- ( ph -> 0 < A )
0nonelaleb.4
|- ( ph -> A <_ B )
0nonelalab.5
|- ( ph -> C e. ( A (,) B ) )
Assertion 0nonelalab
|- ( ph -> 0 =/= C )

Proof

Step Hyp Ref Expression
1 0nonelaleb.1
 |-  ( ph -> A e. RR )
2 0nonelaleb.2
 |-  ( ph -> B e. RR )
3 0nonelaleb.3
 |-  ( ph -> 0 < A )
4 0nonelaleb.4
 |-  ( ph -> A <_ B )
5 0nonelalab.5
 |-  ( ph -> C e. ( A (,) B ) )
6 0red
 |-  ( ph -> 0 e. RR )
7 elioore
 |-  ( C e. ( A (,) B ) -> C e. RR )
8 5 7 syl
 |-  ( ph -> C e. RR )
9 1 rexrd
 |-  ( ph -> A e. RR* )
10 2 rexrd
 |-  ( ph -> B e. RR* )
11 elioo2
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) )
12 9 10 11 syl2anc
 |-  ( ph -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) )
13 5 12 mpbid
 |-  ( ph -> ( C e. RR /\ A < C /\ C < B ) )
14 13 simp2d
 |-  ( ph -> A < C )
15 6 1 8 3 14 lttrd
 |-  ( ph -> 0 < C )
16 6 15 ltned
 |-  ( ph -> 0 =/= C )