| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvrelogpow2b.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
dvrelogpow2b.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
dvrelogpow2b.3 |
|- ( ph -> 0 < A ) |
| 4 |
|
dvrelogpow2b.4 |
|- ( ph -> A <_ B ) |
| 5 |
|
dvrelogpow2b.5 |
|- F = ( x e. ( A (,) B ) |-> ( ( 2 logb x ) ^ N ) ) |
| 6 |
|
dvrelogpow2b.6 |
|- G = ( x e. ( A (,) B ) |-> ( C x. ( ( ( log ` x ) ^ ( N - 1 ) ) / x ) ) ) |
| 7 |
|
dvrelogpow2b.7 |
|- C = ( N / ( ( log ` 2 ) ^ N ) ) |
| 8 |
|
dvrelogpow2b.8 |
|- ( ph -> N e. NN ) |
| 9 |
5
|
a1i |
|- ( ph -> F = ( x e. ( A (,) B ) |-> ( ( 2 logb x ) ^ N ) ) ) |
| 10 |
9
|
oveq2d |
|- ( ph -> ( RR _D F ) = ( RR _D ( x e. ( A (,) B ) |-> ( ( 2 logb x ) ^ N ) ) ) ) |
| 11 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 12 |
11
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 13 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 14 |
13
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
| 15 |
|
elioore |
|- ( x e. ( A (,) B ) -> x e. RR ) |
| 16 |
15
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. RR ) |
| 17 |
16
|
recnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. CC ) |
| 18 |
1
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR ) |
| 19 |
2
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> B e. RR ) |
| 20 |
3
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < A ) |
| 21 |
4
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A <_ B ) |
| 22 |
|
simpr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A (,) B ) ) |
| 23 |
18 19 20 21 22
|
0nonelalab |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 =/= x ) |
| 24 |
23
|
necomd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= 0 ) |
| 25 |
17 24
|
logcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( log ` x ) e. CC ) |
| 26 |
|
2cnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 e. CC ) |
| 27 |
|
0ne2 |
|- 0 =/= 2 |
| 28 |
27
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 =/= 2 ) |
| 29 |
28
|
necomd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 =/= 0 ) |
| 30 |
26 29
|
logcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( log ` 2 ) e. CC ) |
| 31 |
|
0red |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 e. RR ) |
| 32 |
|
1lt2 |
|- 1 < 2 |
| 33 |
32
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 < 2 ) |
| 34 |
|
2rp |
|- 2 e. RR+ |
| 35 |
|
loggt0b |
|- ( 2 e. RR+ -> ( 0 < ( log ` 2 ) <-> 1 < 2 ) ) |
| 36 |
34 35
|
ax-mp |
|- ( 0 < ( log ` 2 ) <-> 1 < 2 ) |
| 37 |
33 36
|
sylibr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < ( log ` 2 ) ) |
| 38 |
31 37
|
ltned |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 =/= ( log ` 2 ) ) |
| 39 |
38
|
necomd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( log ` 2 ) =/= 0 ) |
| 40 |
25 30 39
|
divcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` x ) / ( log ` 2 ) ) e. CC ) |
| 41 |
|
1red |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 e. RR ) |
| 42 |
41 33
|
ltned |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 =/= 2 ) |
| 43 |
42
|
necomd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 =/= 1 ) |
| 44 |
29 43
|
nelprd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. 2 e. { 0 , 1 } ) |
| 45 |
26 44
|
eldifd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 e. ( CC \ { 0 , 1 } ) ) |
| 46 |
|
necom |
|- ( 0 =/= x <-> x =/= 0 ) |
| 47 |
46
|
imbi2i |
|- ( ( ( ph /\ x e. ( A (,) B ) ) -> 0 =/= x ) <-> ( ( ph /\ x e. ( A (,) B ) ) -> x =/= 0 ) ) |
| 48 |
23 47
|
mpbi |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= 0 ) |
| 49 |
48
|
neneqd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = 0 ) |
| 50 |
|
velsn |
|- ( x e. { 0 } <-> x = 0 ) |
| 51 |
49 50
|
sylnibr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. x e. { 0 } ) |
| 52 |
17 51
|
eldifd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( CC \ { 0 } ) ) |
| 53 |
|
logbval |
|- ( ( 2 e. ( CC \ { 0 , 1 } ) /\ x e. ( CC \ { 0 } ) ) -> ( 2 logb x ) = ( ( log ` x ) / ( log ` 2 ) ) ) |
| 54 |
45 52 53
|
syl2anc |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 2 logb x ) = ( ( log ` x ) / ( log ` 2 ) ) ) |
| 55 |
54
|
eleq1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( 2 logb x ) e. CC <-> ( ( log ` x ) / ( log ` 2 ) ) e. CC ) ) |
| 56 |
40 55
|
mpbird |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 2 logb x ) e. CC ) |
| 57 |
34
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 e. RR+ ) |
| 58 |
57
|
relogcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( log ` 2 ) e. RR ) |
| 59 |
16 58
|
remulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( x x. ( log ` 2 ) ) e. RR ) |
| 60 |
57
|
rpne0d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 =/= 0 ) |
| 61 |
26 60
|
logcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( log ` 2 ) e. CC ) |
| 62 |
17 61 24 39
|
mulne0d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( x x. ( log ` 2 ) ) =/= 0 ) |
| 63 |
41 59 62
|
redivcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 1 / ( x x. ( log ` 2 ) ) ) e. RR ) |
| 64 |
|
simpr |
|- ( ( ph /\ y e. CC ) -> y e. CC ) |
| 65 |
8
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 66 |
65
|
adantr |
|- ( ( ph /\ y e. CC ) -> N e. NN0 ) |
| 67 |
64 66
|
expcld |
|- ( ( ph /\ y e. CC ) -> ( y ^ N ) e. CC ) |
| 68 |
8
|
nncnd |
|- ( ph -> N e. CC ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ y e. CC ) -> N e. CC ) |
| 70 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 71 |
8 70
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
| 72 |
71
|
adantr |
|- ( ( ph /\ y e. CC ) -> ( N - 1 ) e. NN0 ) |
| 73 |
64 72
|
expcld |
|- ( ( ph /\ y e. CC ) -> ( y ^ ( N - 1 ) ) e. CC ) |
| 74 |
69 73
|
mulcld |
|- ( ( ph /\ y e. CC ) -> ( N x. ( y ^ ( N - 1 ) ) ) e. CC ) |
| 75 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 76 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 77 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 78 |
77 1 3
|
ltled |
|- ( ph -> 0 <_ A ) |
| 79 |
|
eqid |
|- ( x e. ( A (,) B ) |-> ( 2 logb x ) ) = ( x e. ( A (,) B ) |-> ( 2 logb x ) ) |
| 80 |
|
eqid |
|- ( x e. ( A (,) B ) |-> ( 1 / ( x x. ( log ` 2 ) ) ) ) = ( x e. ( A (,) B ) |-> ( 1 / ( x x. ( log ` 2 ) ) ) ) |
| 81 |
75 76 78 4 79 80
|
dvrelog2b |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( 2 logb x ) ) ) = ( x e. ( A (,) B ) |-> ( 1 / ( x x. ( log ` 2 ) ) ) ) ) |
| 82 |
|
dvexp |
|- ( N e. NN -> ( CC _D ( y e. CC |-> ( y ^ N ) ) ) = ( y e. CC |-> ( N x. ( y ^ ( N - 1 ) ) ) ) ) |
| 83 |
8 82
|
syl |
|- ( ph -> ( CC _D ( y e. CC |-> ( y ^ N ) ) ) = ( y e. CC |-> ( N x. ( y ^ ( N - 1 ) ) ) ) ) |
| 84 |
|
oveq1 |
|- ( y = ( 2 logb x ) -> ( y ^ N ) = ( ( 2 logb x ) ^ N ) ) |
| 85 |
|
oveq1 |
|- ( y = ( 2 logb x ) -> ( y ^ ( N - 1 ) ) = ( ( 2 logb x ) ^ ( N - 1 ) ) ) |
| 86 |
85
|
oveq2d |
|- ( y = ( 2 logb x ) -> ( N x. ( y ^ ( N - 1 ) ) ) = ( N x. ( ( 2 logb x ) ^ ( N - 1 ) ) ) ) |
| 87 |
12 14 56 63 67 74 81 83 84 86
|
dvmptco |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( ( 2 logb x ) ^ N ) ) ) = ( x e. ( A (,) B ) |-> ( ( N x. ( ( 2 logb x ) ^ ( N - 1 ) ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) ) ) |
| 88 |
6
|
a1i |
|- ( ph -> G = ( x e. ( A (,) B ) |-> ( C x. ( ( ( log ` x ) ^ ( N - 1 ) ) / x ) ) ) ) |
| 89 |
7
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> C = ( N / ( ( log ` 2 ) ^ N ) ) ) |
| 90 |
89
|
oveq1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( C x. ( ( ( log ` x ) ^ ( N - 1 ) ) / x ) ) = ( ( N / ( ( log ` 2 ) ^ N ) ) x. ( ( ( log ` x ) ^ ( N - 1 ) ) / x ) ) ) |
| 91 |
68
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> N e. CC ) |
| 92 |
65
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 93 |
92
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> N e. ZZ ) |
| 94 |
30 39 93
|
expclzd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` 2 ) ^ N ) e. CC ) |
| 95 |
71
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( N - 1 ) e. NN0 ) |
| 96 |
25 95
|
expcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` x ) ^ ( N - 1 ) ) e. CC ) |
| 97 |
30 39 93
|
expne0d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` 2 ) ^ N ) =/= 0 ) |
| 98 |
91 94 96 17 97 24
|
divmuldivd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( N / ( ( log ` 2 ) ^ N ) ) x. ( ( ( log ` x ) ^ ( N - 1 ) ) / x ) ) = ( ( N x. ( ( log ` x ) ^ ( N - 1 ) ) ) / ( ( ( log ` 2 ) ^ N ) x. x ) ) ) |
| 99 |
94 17
|
mulcomd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( log ` 2 ) ^ N ) x. x ) = ( x x. ( ( log ` 2 ) ^ N ) ) ) |
| 100 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 101 |
100 68
|
pncan3d |
|- ( ph -> ( 1 + ( N - 1 ) ) = N ) |
| 102 |
101
|
eqcomd |
|- ( ph -> N = ( 1 + ( N - 1 ) ) ) |
| 103 |
102
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> N = ( 1 + ( N - 1 ) ) ) |
| 104 |
103
|
oveq2d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` 2 ) ^ N ) = ( ( log ` 2 ) ^ ( 1 + ( N - 1 ) ) ) ) |
| 105 |
|
1nn0 |
|- 1 e. NN0 |
| 106 |
105
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 e. NN0 ) |
| 107 |
30 95 106
|
expaddd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` 2 ) ^ ( 1 + ( N - 1 ) ) ) = ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) |
| 108 |
104 107
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` 2 ) ^ N ) = ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) |
| 109 |
30
|
exp1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` 2 ) ^ 1 ) = ( log ` 2 ) ) |
| 110 |
109
|
oveq1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ ( N - 1 ) ) ) = ( ( log ` 2 ) x. ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) |
| 111 |
108 110
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` 2 ) ^ N ) = ( ( log ` 2 ) x. ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) |
| 112 |
111
|
oveq2d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( x x. ( ( log ` 2 ) ^ N ) ) = ( x x. ( ( log ` 2 ) x. ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) ) |
| 113 |
99 112
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( log ` 2 ) ^ N ) x. x ) = ( x x. ( ( log ` 2 ) x. ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) ) |
| 114 |
30 95
|
expcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` 2 ) ^ ( N - 1 ) ) e. CC ) |
| 115 |
17 30 114
|
mulassd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( x x. ( log ` 2 ) ) x. ( ( log ` 2 ) ^ ( N - 1 ) ) ) = ( x x. ( ( log ` 2 ) x. ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) ) |
| 116 |
115
|
eqcomd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( x x. ( ( log ` 2 ) x. ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) = ( ( x x. ( log ` 2 ) ) x. ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) |
| 117 |
113 116
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( log ` 2 ) ^ N ) x. x ) = ( ( x x. ( log ` 2 ) ) x. ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) |
| 118 |
17 30
|
mulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( x x. ( log ` 2 ) ) e. CC ) |
| 119 |
118 114
|
mulcomd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( x x. ( log ` 2 ) ) x. ( ( log ` 2 ) ^ ( N - 1 ) ) ) = ( ( ( log ` 2 ) ^ ( N - 1 ) ) x. ( x x. ( log ` 2 ) ) ) ) |
| 120 |
117 119
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( log ` 2 ) ^ N ) x. x ) = ( ( ( log ` 2 ) ^ ( N - 1 ) ) x. ( x x. ( log ` 2 ) ) ) ) |
| 121 |
120
|
oveq2d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( N x. ( ( log ` x ) ^ ( N - 1 ) ) ) / ( ( ( log ` 2 ) ^ N ) x. x ) ) = ( ( N x. ( ( log ` x ) ^ ( N - 1 ) ) ) / ( ( ( log ` 2 ) ^ ( N - 1 ) ) x. ( x x. ( log ` 2 ) ) ) ) ) |
| 122 |
98 121
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( N / ( ( log ` 2 ) ^ N ) ) x. ( ( ( log ` x ) ^ ( N - 1 ) ) / x ) ) = ( ( N x. ( ( log ` x ) ^ ( N - 1 ) ) ) / ( ( ( log ` 2 ) ^ ( N - 1 ) ) x. ( x x. ( log ` 2 ) ) ) ) ) |
| 123 |
90 122
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( C x. ( ( ( log ` x ) ^ ( N - 1 ) ) / x ) ) = ( ( N x. ( ( log ` x ) ^ ( N - 1 ) ) ) / ( ( ( log ` 2 ) ^ ( N - 1 ) ) x. ( x x. ( log ` 2 ) ) ) ) ) |
| 124 |
91 96
|
mulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( N x. ( ( log ` x ) ^ ( N - 1 ) ) ) e. CC ) |
| 125 |
|
1zzd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 e. ZZ ) |
| 126 |
93 125
|
zsubcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( N - 1 ) e. ZZ ) |
| 127 |
30 39 126
|
expne0d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` 2 ) ^ ( N - 1 ) ) =/= 0 ) |
| 128 |
124 114 118 127 62
|
divdiv1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( N x. ( ( log ` x ) ^ ( N - 1 ) ) ) / ( ( log ` 2 ) ^ ( N - 1 ) ) ) / ( x x. ( log ` 2 ) ) ) = ( ( N x. ( ( log ` x ) ^ ( N - 1 ) ) ) / ( ( ( log ` 2 ) ^ ( N - 1 ) ) x. ( x x. ( log ` 2 ) ) ) ) ) |
| 129 |
128
|
eqcomd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( N x. ( ( log ` x ) ^ ( N - 1 ) ) ) / ( ( ( log ` 2 ) ^ ( N - 1 ) ) x. ( x x. ( log ` 2 ) ) ) ) = ( ( ( N x. ( ( log ` x ) ^ ( N - 1 ) ) ) / ( ( log ` 2 ) ^ ( N - 1 ) ) ) / ( x x. ( log ` 2 ) ) ) ) |
| 130 |
123 129
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( C x. ( ( ( log ` x ) ^ ( N - 1 ) ) / x ) ) = ( ( ( N x. ( ( log ` x ) ^ ( N - 1 ) ) ) / ( ( log ` 2 ) ^ ( N - 1 ) ) ) / ( x x. ( log ` 2 ) ) ) ) |
| 131 |
91 96 114 127
|
divassd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( N x. ( ( log ` x ) ^ ( N - 1 ) ) ) / ( ( log ` 2 ) ^ ( N - 1 ) ) ) = ( N x. ( ( ( log ` x ) ^ ( N - 1 ) ) / ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) ) |
| 132 |
131
|
oveq1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( N x. ( ( log ` x ) ^ ( N - 1 ) ) ) / ( ( log ` 2 ) ^ ( N - 1 ) ) ) / ( x x. ( log ` 2 ) ) ) = ( ( N x. ( ( ( log ` x ) ^ ( N - 1 ) ) / ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) / ( x x. ( log ` 2 ) ) ) ) |
| 133 |
130 132
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( C x. ( ( ( log ` x ) ^ ( N - 1 ) ) / x ) ) = ( ( N x. ( ( ( log ` x ) ^ ( N - 1 ) ) / ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) / ( x x. ( log ` 2 ) ) ) ) |
| 134 |
25 30 39 95
|
expdivd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( log ` x ) / ( log ` 2 ) ) ^ ( N - 1 ) ) = ( ( ( log ` x ) ^ ( N - 1 ) ) / ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) |
| 135 |
134
|
eqcomd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( log ` x ) ^ ( N - 1 ) ) / ( ( log ` 2 ) ^ ( N - 1 ) ) ) = ( ( ( log ` x ) / ( log ` 2 ) ) ^ ( N - 1 ) ) ) |
| 136 |
135
|
oveq2d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( N x. ( ( ( log ` x ) ^ ( N - 1 ) ) / ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) = ( N x. ( ( ( log ` x ) / ( log ` 2 ) ) ^ ( N - 1 ) ) ) ) |
| 137 |
136
|
oveq1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( N x. ( ( ( log ` x ) ^ ( N - 1 ) ) / ( ( log ` 2 ) ^ ( N - 1 ) ) ) ) / ( x x. ( log ` 2 ) ) ) = ( ( N x. ( ( ( log ` x ) / ( log ` 2 ) ) ^ ( N - 1 ) ) ) / ( x x. ( log ` 2 ) ) ) ) |
| 138 |
133 137
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( C x. ( ( ( log ` x ) ^ ( N - 1 ) ) / x ) ) = ( ( N x. ( ( ( log ` x ) / ( log ` 2 ) ) ^ ( N - 1 ) ) ) / ( x x. ( log ` 2 ) ) ) ) |
| 139 |
54
|
oveq1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( 2 logb x ) ^ ( N - 1 ) ) = ( ( ( log ` x ) / ( log ` 2 ) ) ^ ( N - 1 ) ) ) |
| 140 |
139
|
oveq2d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( N x. ( ( 2 logb x ) ^ ( N - 1 ) ) ) = ( N x. ( ( ( log ` x ) / ( log ` 2 ) ) ^ ( N - 1 ) ) ) ) |
| 141 |
140
|
oveq1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( N x. ( ( 2 logb x ) ^ ( N - 1 ) ) ) / ( x x. ( log ` 2 ) ) ) = ( ( N x. ( ( ( log ` x ) / ( log ` 2 ) ) ^ ( N - 1 ) ) ) / ( x x. ( log ` 2 ) ) ) ) |
| 142 |
141
|
eqcomd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( N x. ( ( ( log ` x ) / ( log ` 2 ) ) ^ ( N - 1 ) ) ) / ( x x. ( log ` 2 ) ) ) = ( ( N x. ( ( 2 logb x ) ^ ( N - 1 ) ) ) / ( x x. ( log ` 2 ) ) ) ) |
| 143 |
138 142
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( C x. ( ( ( log ` x ) ^ ( N - 1 ) ) / x ) ) = ( ( N x. ( ( 2 logb x ) ^ ( N - 1 ) ) ) / ( x x. ( log ` 2 ) ) ) ) |
| 144 |
56 95
|
expcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( 2 logb x ) ^ ( N - 1 ) ) e. CC ) |
| 145 |
91 144
|
mulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( N x. ( ( 2 logb x ) ^ ( N - 1 ) ) ) e. CC ) |
| 146 |
145 118 62
|
divrecd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( N x. ( ( 2 logb x ) ^ ( N - 1 ) ) ) / ( x x. ( log ` 2 ) ) ) = ( ( N x. ( ( 2 logb x ) ^ ( N - 1 ) ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) ) |
| 147 |
143 146
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( C x. ( ( ( log ` x ) ^ ( N - 1 ) ) / x ) ) = ( ( N x. ( ( 2 logb x ) ^ ( N - 1 ) ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) ) |
| 148 |
147
|
mpteq2dva |
|- ( ph -> ( x e. ( A (,) B ) |-> ( C x. ( ( ( log ` x ) ^ ( N - 1 ) ) / x ) ) ) = ( x e. ( A (,) B ) |-> ( ( N x. ( ( 2 logb x ) ^ ( N - 1 ) ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) ) ) |
| 149 |
88 148
|
eqtrd |
|- ( ph -> G = ( x e. ( A (,) B ) |-> ( ( N x. ( ( 2 logb x ) ^ ( N - 1 ) ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) ) ) |
| 150 |
149
|
eqcomd |
|- ( ph -> ( x e. ( A (,) B ) |-> ( ( N x. ( ( 2 logb x ) ^ ( N - 1 ) ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) ) = G ) |
| 151 |
87 150
|
eqtrd |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( ( 2 logb x ) ^ N ) ) ) = G ) |
| 152 |
10 151
|
eqtrd |
|- ( ph -> ( RR _D F ) = G ) |