Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p1p3.1 |
|- ( ph -> N e. NN ) |
2 |
|
aks4d1p1p3.2 |
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) |
3 |
|
aks4d1p1p3.3 |
|- ( ph -> 3 <_ N ) |
4 |
|
2re |
|- 2 e. RR |
5 |
4
|
a1i |
|- ( ph -> 2 e. RR ) |
6 |
|
2pos |
|- 0 < 2 |
7 |
6
|
a1i |
|- ( ph -> 0 < 2 ) |
8 |
1
|
nnred |
|- ( ph -> N e. RR ) |
9 |
1
|
nngt0d |
|- ( ph -> 0 < N ) |
10 |
|
1red |
|- ( ph -> 1 e. RR ) |
11 |
|
1lt2 |
|- 1 < 2 |
12 |
11
|
a1i |
|- ( ph -> 1 < 2 ) |
13 |
10 12
|
ltned |
|- ( ph -> 1 =/= 2 ) |
14 |
13
|
necomd |
|- ( ph -> 2 =/= 1 ) |
15 |
5 7 8 9 14
|
relogbcld |
|- ( ph -> ( 2 logb N ) e. RR ) |
16 |
|
5nn0 |
|- 5 e. NN0 |
17 |
16
|
a1i |
|- ( ph -> 5 e. NN0 ) |
18 |
15 17
|
reexpcld |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) e. RR ) |
19 |
|
ceilcl |
|- ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
20 |
18 19
|
syl |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
21 |
20
|
zred |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. RR ) |
22 |
2
|
a1i |
|- ( ph -> B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
23 |
22
|
eleq1d |
|- ( ph -> ( B e. RR <-> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. RR ) ) |
24 |
21 23
|
mpbird |
|- ( ph -> B e. RR ) |
25 |
|
0red |
|- ( ph -> 0 e. RR ) |
26 |
|
7re |
|- 7 e. RR |
27 |
26
|
a1i |
|- ( ph -> 7 e. RR ) |
28 |
|
7pos |
|- 0 < 7 |
29 |
28
|
a1i |
|- ( ph -> 0 < 7 ) |
30 |
8 3
|
3lexlogpow5ineq3 |
|- ( ph -> 7 < ( ( 2 logb N ) ^ 5 ) ) |
31 |
|
ceilge |
|- ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
32 |
18 31
|
syl |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
33 |
27 18 21 30 32
|
ltletrd |
|- ( ph -> 7 < ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
34 |
22
|
eqcomd |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) = B ) |
35 |
33 34
|
breqtrd |
|- ( ph -> 7 < B ) |
36 |
25 27 24 29 35
|
lttrd |
|- ( ph -> 0 < B ) |
37 |
5 7 24 36 14
|
relogbcld |
|- ( ph -> ( 2 logb B ) e. RR ) |
38 |
37
|
flcld |
|- ( ph -> ( |_ ` ( 2 logb B ) ) e. ZZ ) |
39 |
38
|
zred |
|- ( ph -> ( |_ ` ( 2 logb B ) ) e. RR ) |
40 |
18 10
|
readdcld |
|- ( ph -> ( ( ( 2 logb N ) ^ 5 ) + 1 ) e. RR ) |
41 |
18
|
ltp1d |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) < ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) |
42 |
27 18 40 30 41
|
lttrd |
|- ( ph -> 7 < ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) |
43 |
25 27 40 29 42
|
lttrd |
|- ( ph -> 0 < ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) |
44 |
5 7 40 43 14
|
relogbcld |
|- ( ph -> ( 2 logb ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) e. RR ) |
45 |
|
flle |
|- ( ( 2 logb B ) e. RR -> ( |_ ` ( 2 logb B ) ) <_ ( 2 logb B ) ) |
46 |
37 45
|
syl |
|- ( ph -> ( |_ ` ( 2 logb B ) ) <_ ( 2 logb B ) ) |
47 |
|
ceilm1lt |
|- ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( ( |^ ` ( ( 2 logb N ) ^ 5 ) ) - 1 ) < ( ( 2 logb N ) ^ 5 ) ) |
48 |
18 47
|
syl |
|- ( ph -> ( ( |^ ` ( ( 2 logb N ) ^ 5 ) ) - 1 ) < ( ( 2 logb N ) ^ 5 ) ) |
49 |
21 10 18
|
ltsubaddd |
|- ( ph -> ( ( ( |^ ` ( ( 2 logb N ) ^ 5 ) ) - 1 ) < ( ( 2 logb N ) ^ 5 ) <-> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) < ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) ) |
50 |
48 49
|
mpbid |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) < ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) |
51 |
22 50
|
eqbrtrd |
|- ( ph -> B < ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) |
52 |
|
2z |
|- 2 e. ZZ |
53 |
52
|
a1i |
|- ( ph -> 2 e. ZZ ) |
54 |
53
|
uzidd |
|- ( ph -> 2 e. ( ZZ>= ` 2 ) ) |
55 |
24 36
|
elrpd |
|- ( ph -> B e. RR+ ) |
56 |
40 43
|
elrpd |
|- ( ph -> ( ( ( 2 logb N ) ^ 5 ) + 1 ) e. RR+ ) |
57 |
|
logblt |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ B e. RR+ /\ ( ( ( 2 logb N ) ^ 5 ) + 1 ) e. RR+ ) -> ( B < ( ( ( 2 logb N ) ^ 5 ) + 1 ) <-> ( 2 logb B ) < ( 2 logb ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) ) ) |
58 |
54 55 56 57
|
syl3anc |
|- ( ph -> ( B < ( ( ( 2 logb N ) ^ 5 ) + 1 ) <-> ( 2 logb B ) < ( 2 logb ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) ) ) |
59 |
51 58
|
mpbid |
|- ( ph -> ( 2 logb B ) < ( 2 logb ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) ) |
60 |
39 37 44 46 59
|
lelttrd |
|- ( ph -> ( |_ ` ( 2 logb B ) ) < ( 2 logb ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) ) |
61 |
|
3re |
|- 3 e. RR |
62 |
61
|
a1i |
|- ( ph -> 3 e. RR ) |
63 |
|
1lt3 |
|- 1 < 3 |
64 |
63
|
a1i |
|- ( ph -> 1 < 3 ) |
65 |
10 62 8 64 3
|
ltletrd |
|- ( ph -> 1 < N ) |
66 |
8 65 39 44
|
cxpltd |
|- ( ph -> ( ( |_ ` ( 2 logb B ) ) < ( 2 logb ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) <-> ( N ^c ( |_ ` ( 2 logb B ) ) ) < ( N ^c ( 2 logb ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) ) ) ) |
67 |
60 66
|
mpbid |
|- ( ph -> ( N ^c ( |_ ` ( 2 logb B ) ) ) < ( N ^c ( 2 logb ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) ) ) |