Metamath Proof Explorer


Theorem 3lexlogpow5ineq3

Description: Combined inequality chain for a specific power of the binary logarithm, proposed by Mario Carneiro. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses 3lexlogpow5ineq3.1
|- ( ph -> X e. RR )
3lexlogpow5ineq3.2
|- ( ph -> 3 <_ X )
Assertion 3lexlogpow5ineq3
|- ( ph -> 7 < ( ( 2 logb X ) ^ 5 ) )

Proof

Step Hyp Ref Expression
1 3lexlogpow5ineq3.1
 |-  ( ph -> X e. RR )
2 3lexlogpow5ineq3.2
 |-  ( ph -> 3 <_ X )
3 7re
 |-  7 e. RR
4 3 a1i
 |-  ( ph -> 7 e. RR )
5 9re
 |-  9 e. RR
6 5 a1i
 |-  ( ph -> 9 e. RR )
7 2re
 |-  2 e. RR
8 7 a1i
 |-  ( ph -> 2 e. RR )
9 2pos
 |-  0 < 2
10 9 a1i
 |-  ( ph -> 0 < 2 )
11 0red
 |-  ( ph -> 0 e. RR )
12 3re
 |-  3 e. RR
13 12 a1i
 |-  ( ph -> 3 e. RR )
14 3pos
 |-  0 < 3
15 14 a1i
 |-  ( ph -> 0 < 3 )
16 11 13 1 15 2 ltletrd
 |-  ( ph -> 0 < X )
17 1red
 |-  ( ph -> 1 e. RR )
18 1lt2
 |-  1 < 2
19 18 a1i
 |-  ( ph -> 1 < 2 )
20 17 19 ltned
 |-  ( ph -> 1 =/= 2 )
21 20 necomd
 |-  ( ph -> 2 =/= 1 )
22 8 10 1 16 21 relogbcld
 |-  ( ph -> ( 2 logb X ) e. RR )
23 5nn0
 |-  5 e. NN0
24 23 a1i
 |-  ( ph -> 5 e. NN0 )
25 22 24 reexpcld
 |-  ( ph -> ( ( 2 logb X ) ^ 5 ) e. RR )
26 7lt9
 |-  7 < 9
27 26 a1i
 |-  ( ph -> 7 < 9 )
28 1 2 3lexlogpow5ineq4
 |-  ( ph -> 9 < ( ( 2 logb X ) ^ 5 ) )
29 4 6 25 27 28 lttrd
 |-  ( ph -> 7 < ( ( 2 logb X ) ^ 5 ) )