Description: Combined inequality chain for a specific power of the binary logarithm, proposed by Mario Carneiro. (Contributed by metakunt, 22-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3lexlogpow5ineq3.1 | |- ( ph -> X e. RR ) |
|
| 3lexlogpow5ineq3.2 | |- ( ph -> 3 <_ X ) |
||
| Assertion | 3lexlogpow5ineq3 | |- ( ph -> 7 < ( ( 2 logb X ) ^ 5 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3lexlogpow5ineq3.1 | |- ( ph -> X e. RR ) |
|
| 2 | 3lexlogpow5ineq3.2 | |- ( ph -> 3 <_ X ) |
|
| 3 | 7re | |- 7 e. RR |
|
| 4 | 3 | a1i | |- ( ph -> 7 e. RR ) |
| 5 | 9re | |- 9 e. RR |
|
| 6 | 5 | a1i | |- ( ph -> 9 e. RR ) |
| 7 | 2re | |- 2 e. RR |
|
| 8 | 7 | a1i | |- ( ph -> 2 e. RR ) |
| 9 | 2pos | |- 0 < 2 |
|
| 10 | 9 | a1i | |- ( ph -> 0 < 2 ) |
| 11 | 0red | |- ( ph -> 0 e. RR ) |
|
| 12 | 3re | |- 3 e. RR |
|
| 13 | 12 | a1i | |- ( ph -> 3 e. RR ) |
| 14 | 3pos | |- 0 < 3 |
|
| 15 | 14 | a1i | |- ( ph -> 0 < 3 ) |
| 16 | 11 13 1 15 2 | ltletrd | |- ( ph -> 0 < X ) |
| 17 | 1red | |- ( ph -> 1 e. RR ) |
|
| 18 | 1lt2 | |- 1 < 2 |
|
| 19 | 18 | a1i | |- ( ph -> 1 < 2 ) |
| 20 | 17 19 | ltned | |- ( ph -> 1 =/= 2 ) |
| 21 | 20 | necomd | |- ( ph -> 2 =/= 1 ) |
| 22 | 8 10 1 16 21 | relogbcld | |- ( ph -> ( 2 logb X ) e. RR ) |
| 23 | 5nn0 | |- 5 e. NN0 |
|
| 24 | 23 | a1i | |- ( ph -> 5 e. NN0 ) |
| 25 | 22 24 | reexpcld | |- ( ph -> ( ( 2 logb X ) ^ 5 ) e. RR ) |
| 26 | 7lt9 | |- 7 < 9 |
|
| 27 | 26 | a1i | |- ( ph -> 7 < 9 ) |
| 28 | 1 2 | 3lexlogpow5ineq4 | |- ( ph -> 9 < ( ( 2 logb X ) ^ 5 ) ) |
| 29 | 4 6 25 27 28 | lttrd | |- ( ph -> 7 < ( ( 2 logb X ) ^ 5 ) ) |