Step |
Hyp |
Ref |
Expression |
1 |
|
3lexlogpow5ineq4.1 |
|- ( ph -> X e. RR ) |
2 |
|
3lexlogpow5ineq4.2 |
|- ( ph -> 3 <_ X ) |
3 |
|
9re |
|- 9 e. RR |
4 |
3
|
a1i |
|- ( ph -> 9 e. RR ) |
5 |
|
1nn0 |
|- 1 e. NN0 |
6 |
|
1nn |
|- 1 e. NN |
7 |
5 6
|
decnncl |
|- ; 1 1 e. NN |
8 |
7
|
a1i |
|- ( ph -> ; 1 1 e. NN ) |
9 |
8
|
nnred |
|- ( ph -> ; 1 1 e. RR ) |
10 |
|
7re |
|- 7 e. RR |
11 |
10
|
a1i |
|- ( ph -> 7 e. RR ) |
12 |
|
0red |
|- ( ph -> 0 e. RR ) |
13 |
|
7pos |
|- 0 < 7 |
14 |
13
|
a1i |
|- ( ph -> 0 < 7 ) |
15 |
12 14
|
ltned |
|- ( ph -> 0 =/= 7 ) |
16 |
15
|
necomd |
|- ( ph -> 7 =/= 0 ) |
17 |
9 11 16
|
redivcld |
|- ( ph -> ( ; 1 1 / 7 ) e. RR ) |
18 |
|
5nn0 |
|- 5 e. NN0 |
19 |
18
|
a1i |
|- ( ph -> 5 e. NN0 ) |
20 |
17 19
|
reexpcld |
|- ( ph -> ( ( ; 1 1 / 7 ) ^ 5 ) e. RR ) |
21 |
|
2re |
|- 2 e. RR |
22 |
21
|
a1i |
|- ( ph -> 2 e. RR ) |
23 |
|
2pos |
|- 0 < 2 |
24 |
23
|
a1i |
|- ( ph -> 0 < 2 ) |
25 |
|
3re |
|- 3 e. RR |
26 |
25
|
a1i |
|- ( ph -> 3 e. RR ) |
27 |
|
3pos |
|- 0 < 3 |
28 |
27
|
a1i |
|- ( ph -> 0 < 3 ) |
29 |
12 26 1 28 2
|
ltletrd |
|- ( ph -> 0 < X ) |
30 |
|
1red |
|- ( ph -> 1 e. RR ) |
31 |
|
1lt2 |
|- 1 < 2 |
32 |
31
|
a1i |
|- ( ph -> 1 < 2 ) |
33 |
30 32
|
ltned |
|- ( ph -> 1 =/= 2 ) |
34 |
33
|
necomd |
|- ( ph -> 2 =/= 1 ) |
35 |
22 24 1 29 34
|
relogbcld |
|- ( ph -> ( 2 logb X ) e. RR ) |
36 |
35 19
|
reexpcld |
|- ( ph -> ( ( 2 logb X ) ^ 5 ) e. RR ) |
37 |
|
3lexlogpow5ineq1 |
|- 9 < ( ( ; 1 1 / 7 ) ^ 5 ) |
38 |
37
|
a1i |
|- ( ph -> 9 < ( ( ; 1 1 / 7 ) ^ 5 ) ) |
39 |
1 2
|
3lexlogpow5ineq2 |
|- ( ph -> ( ( ; 1 1 / 7 ) ^ 5 ) <_ ( ( 2 logb X ) ^ 5 ) ) |
40 |
4 20 36 38 39
|
ltletrd |
|- ( ph -> 9 < ( ( 2 logb X ) ^ 5 ) ) |