Description: Sharper logarithm inequality chain. (Contributed by metakunt, 21-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3lexlogpow5ineq4.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
3lexlogpow5ineq4.2 | ⊢ ( 𝜑 → 3 ≤ 𝑋 ) | ||
Assertion | 3lexlogpow5ineq4 | ⊢ ( 𝜑 → 9 < ( ( 2 logb 𝑋 ) ↑ 5 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3lexlogpow5ineq4.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
2 | 3lexlogpow5ineq4.2 | ⊢ ( 𝜑 → 3 ≤ 𝑋 ) | |
3 | 9re | ⊢ 9 ∈ ℝ | |
4 | 3 | a1i | ⊢ ( 𝜑 → 9 ∈ ℝ ) |
5 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
6 | 1nn | ⊢ 1 ∈ ℕ | |
7 | 5 6 | decnncl | ⊢ ; 1 1 ∈ ℕ |
8 | 7 | a1i | ⊢ ( 𝜑 → ; 1 1 ∈ ℕ ) |
9 | 8 | nnred | ⊢ ( 𝜑 → ; 1 1 ∈ ℝ ) |
10 | 7re | ⊢ 7 ∈ ℝ | |
11 | 10 | a1i | ⊢ ( 𝜑 → 7 ∈ ℝ ) |
12 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
13 | 7pos | ⊢ 0 < 7 | |
14 | 13 | a1i | ⊢ ( 𝜑 → 0 < 7 ) |
15 | 12 14 | ltned | ⊢ ( 𝜑 → 0 ≠ 7 ) |
16 | 15 | necomd | ⊢ ( 𝜑 → 7 ≠ 0 ) |
17 | 9 11 16 | redivcld | ⊢ ( 𝜑 → ( ; 1 1 / 7 ) ∈ ℝ ) |
18 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
19 | 18 | a1i | ⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
20 | 17 19 | reexpcld | ⊢ ( 𝜑 → ( ( ; 1 1 / 7 ) ↑ 5 ) ∈ ℝ ) |
21 | 2re | ⊢ 2 ∈ ℝ | |
22 | 21 | a1i | ⊢ ( 𝜑 → 2 ∈ ℝ ) |
23 | 2pos | ⊢ 0 < 2 | |
24 | 23 | a1i | ⊢ ( 𝜑 → 0 < 2 ) |
25 | 3re | ⊢ 3 ∈ ℝ | |
26 | 25 | a1i | ⊢ ( 𝜑 → 3 ∈ ℝ ) |
27 | 3pos | ⊢ 0 < 3 | |
28 | 27 | a1i | ⊢ ( 𝜑 → 0 < 3 ) |
29 | 12 26 1 28 2 | ltletrd | ⊢ ( 𝜑 → 0 < 𝑋 ) |
30 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
31 | 1lt2 | ⊢ 1 < 2 | |
32 | 31 | a1i | ⊢ ( 𝜑 → 1 < 2 ) |
33 | 30 32 | ltned | ⊢ ( 𝜑 → 1 ≠ 2 ) |
34 | 33 | necomd | ⊢ ( 𝜑 → 2 ≠ 1 ) |
35 | 22 24 1 29 34 | relogbcld | ⊢ ( 𝜑 → ( 2 logb 𝑋 ) ∈ ℝ ) |
36 | 35 19 | reexpcld | ⊢ ( 𝜑 → ( ( 2 logb 𝑋 ) ↑ 5 ) ∈ ℝ ) |
37 | 3lexlogpow5ineq1 | ⊢ 9 < ( ( ; 1 1 / 7 ) ↑ 5 ) | |
38 | 37 | a1i | ⊢ ( 𝜑 → 9 < ( ( ; 1 1 / 7 ) ↑ 5 ) ) |
39 | 1 2 | 3lexlogpow5ineq2 | ⊢ ( 𝜑 → ( ( ; 1 1 / 7 ) ↑ 5 ) ≤ ( ( 2 logb 𝑋 ) ↑ 5 ) ) |
40 | 4 20 36 38 39 | ltletrd | ⊢ ( 𝜑 → 9 < ( ( 2 logb 𝑋 ) ↑ 5 ) ) |