Metamath Proof Explorer


Theorem 3lexlogpow5ineq4

Description: Sharper logarithm inequality chain. (Contributed by metakunt, 21-Aug-2024)

Ref Expression
Hypotheses 3lexlogpow5ineq4.1 ( 𝜑𝑋 ∈ ℝ )
3lexlogpow5ineq4.2 ( 𝜑 → 3 ≤ 𝑋 )
Assertion 3lexlogpow5ineq4 ( 𝜑 → 9 < ( ( 2 logb 𝑋 ) ↑ 5 ) )

Proof

Step Hyp Ref Expression
1 3lexlogpow5ineq4.1 ( 𝜑𝑋 ∈ ℝ )
2 3lexlogpow5ineq4.2 ( 𝜑 → 3 ≤ 𝑋 )
3 9re 9 ∈ ℝ
4 3 a1i ( 𝜑 → 9 ∈ ℝ )
5 1nn0 1 ∈ ℕ0
6 1nn 1 ∈ ℕ
7 5 6 decnncl 1 1 ∈ ℕ
8 7 a1i ( 𝜑 1 1 ∈ ℕ )
9 8 nnred ( 𝜑 1 1 ∈ ℝ )
10 7re 7 ∈ ℝ
11 10 a1i ( 𝜑 → 7 ∈ ℝ )
12 0red ( 𝜑 → 0 ∈ ℝ )
13 7pos 0 < 7
14 13 a1i ( 𝜑 → 0 < 7 )
15 12 14 ltned ( 𝜑 → 0 ≠ 7 )
16 15 necomd ( 𝜑 → 7 ≠ 0 )
17 9 11 16 redivcld ( 𝜑 → ( 1 1 / 7 ) ∈ ℝ )
18 5nn0 5 ∈ ℕ0
19 18 a1i ( 𝜑 → 5 ∈ ℕ0 )
20 17 19 reexpcld ( 𝜑 → ( ( 1 1 / 7 ) ↑ 5 ) ∈ ℝ )
21 2re 2 ∈ ℝ
22 21 a1i ( 𝜑 → 2 ∈ ℝ )
23 2pos 0 < 2
24 23 a1i ( 𝜑 → 0 < 2 )
25 3re 3 ∈ ℝ
26 25 a1i ( 𝜑 → 3 ∈ ℝ )
27 3pos 0 < 3
28 27 a1i ( 𝜑 → 0 < 3 )
29 12 26 1 28 2 ltletrd ( 𝜑 → 0 < 𝑋 )
30 1red ( 𝜑 → 1 ∈ ℝ )
31 1lt2 1 < 2
32 31 a1i ( 𝜑 → 1 < 2 )
33 30 32 ltned ( 𝜑 → 1 ≠ 2 )
34 33 necomd ( 𝜑 → 2 ≠ 1 )
35 22 24 1 29 34 relogbcld ( 𝜑 → ( 2 logb 𝑋 ) ∈ ℝ )
36 35 19 reexpcld ( 𝜑 → ( ( 2 logb 𝑋 ) ↑ 5 ) ∈ ℝ )
37 3lexlogpow5ineq1 9 < ( ( 1 1 / 7 ) ↑ 5 )
38 37 a1i ( 𝜑 → 9 < ( ( 1 1 / 7 ) ↑ 5 ) )
39 1 2 3lexlogpow5ineq2 ( 𝜑 → ( ( 1 1 / 7 ) ↑ 5 ) ≤ ( ( 2 logb 𝑋 ) ↑ 5 ) )
40 4 20 36 38 39 ltletrd ( 𝜑 → 9 < ( ( 2 logb 𝑋 ) ↑ 5 ) )