Metamath Proof Explorer


Theorem 3lexlogpow5ineq4

Description: Sharper logarithm inequality chain. (Contributed by metakunt, 21-Aug-2024)

Ref Expression
Hypotheses 3lexlogpow5ineq4.1 φX
3lexlogpow5ineq4.2 φ3X
Assertion 3lexlogpow5ineq4 φ9<log2X5

Proof

Step Hyp Ref Expression
1 3lexlogpow5ineq4.1 φX
2 3lexlogpow5ineq4.2 φ3X
3 9re 9
4 3 a1i φ9
5 1nn0 10
6 1nn 1
7 5 6 decnncl 11
8 7 a1i φ11
9 8 nnred φ11
10 7re 7
11 10 a1i φ7
12 0red φ0
13 7pos 0<7
14 13 a1i φ0<7
15 12 14 ltned φ07
16 15 necomd φ70
17 9 11 16 redivcld φ117
18 5nn0 50
19 18 a1i φ50
20 17 19 reexpcld φ1175
21 2re 2
22 21 a1i φ2
23 2pos 0<2
24 23 a1i φ0<2
25 3re 3
26 25 a1i φ3
27 3pos 0<3
28 27 a1i φ0<3
29 12 26 1 28 2 ltletrd φ0<X
30 1red φ1
31 1lt2 1<2
32 31 a1i φ1<2
33 30 32 ltned φ12
34 33 necomd φ21
35 22 24 1 29 34 relogbcld φlog2X
36 35 19 reexpcld φlog2X5
37 3lexlogpow5ineq1 9<1175
38 37 a1i φ9<1175
39 1 2 3lexlogpow5ineq2 φ1175log2X5
40 4 20 36 38 39 ltletrd φ9<log2X5