Metamath Proof Explorer


Theorem 3lexlogpow5ineq2

Description: Second inequality in inequality chain, proposed by Mario Carneiro. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses 3lexlogpow5ineq2.1 φX
3lexlogpow5ineq2.2 φ3X
Assertion 3lexlogpow5ineq2 φ1175log2X5

Proof

Step Hyp Ref Expression
1 3lexlogpow5ineq2.1 φX
2 3lexlogpow5ineq2.2 φ3X
3 1nn0 10
4 1nn 1
5 3 4 decnncl 11
6 5 a1i φ11
7 6 nnred φ11
8 7re 7
9 8 a1i φ7
10 0red φ0
11 7pos 0<7
12 11 a1i φ0<7
13 10 12 ltned φ07
14 13 necomd φ70
15 7 9 14 redivcld φ117
16 2re 2
17 16 a1i φ2
18 2pos 0<2
19 18 a1i φ0<2
20 3re 3
21 20 a1i φ3
22 3pos 0<3
23 22 a1i φ0<3
24 10 21 1 23 2 ltletrd φ0<X
25 1red φ1
26 1lt2 1<2
27 26 a1i φ1<2
28 25 27 ltned φ12
29 28 necomd φ21
30 17 19 1 24 29 relogbcld φlog2X
31 5nn0 50
32 31 a1i φ50
33 7nn 7
34 33 a1i φ7
35 34 nnrpd φ7+
36 0nn0 00
37 tru
38 0red 0
39 9re 9
40 39 a1i 9
41 9pos 0<9
42 41 a1i 0<9
43 38 40 42 ltled 09
44 37 43 ax-mp 09
45 4 3 36 44 declei 011
46 45 a1i φ011
47 7 35 46 divge0d φ0117
48 17 19 21 23 29 relogbcld φlog23
49 2exp11 211=2048
50 49 eqcomi 2048=211
51 50 a1i φ2048=211
52 51 oveq2d φlog22048=log2211
53 17 19 elrpd φ2+
54 6 nnzd φ11
55 53 29 54 relogbexpd φlog2211=11
56 52 55 eqtrd φlog22048=11
57 56 eqcomd φ11=log22048
58 2z 2
59 58 a1i φ2
60 17 leidd φ22
61 2nn0 20
62 61 36 deccl 200
63 4nn0 40
64 62 63 deccl 2040
65 8nn 8
66 64 65 decnncl 2048
67 66 a1i φ2048
68 67 nnred φ2048
69 4nn 4
70 62 69 decnncl 204
71 8nn0 80
72 70 71 36 44 decltdi 0<2048
73 72 a1i φ0<2048
74 61 3 deccl 210
75 74 71 deccl 2180
76 75 33 decnncl 2187
77 76 a1i φ2187
78 77 nnred φ2187
79 74 65 decnncl 218
80 7nn0 70
81 79 80 36 44 decltdi 0<2187
82 81 a1i φ0<2187
83 8re 8
84 83 3 nn0addge1i 88+1
85 8p1e9 8+1=9
86 84 85 breqtri 89
87 4lt10 4<10
88 0lt1 0<1
89 61 36 4 88 declt 20<21
90 62 74 63 71 87 89 decltc 204<218
91 64 75 71 80 86 90 decleh 20482187
92 91 a1i φ20482187
93 59 60 68 73 78 82 92 logblebd φlog22048log22187
94 57 93 eqbrtrd φ11log22187
95 7 recnd φ11
96 9 recnd φ7
97 95 96 14 divcan1d φ1177=11
98 97 eqcomd φ11=1177
99 3exp7 37=2187
100 99 eqcomi 2187=37
101 100 a1i φ2187=37
102 101 oveq2d φlog22187=log237
103 21 23 elrpd φ3+
104 34 nnzd φ7
105 53 29 103 104 relogbzexpd φlog237=7log23
106 102 105 eqtrd φlog22187=7log23
107 48 recnd φlog23
108 96 107 mulcomd φ7log23=log237
109 106 108 eqtrd φlog22187=log237
110 94 98 109 3brtr3d φ1177log237
111 15 48 35 lemul1d φ117log231177log237
112 110 111 mpbird φ117log23
113 59 60 21 23 1 24 2 logblebd φlog23log2X
114 15 48 30 112 113 letrd φ117log2X
115 15 30 32 47 114 leexp1ad φ1175log2X5