Step |
Hyp |
Ref |
Expression |
1 |
|
3lexlogpow5ineq2.1 |
|- ( ph -> X e. RR ) |
2 |
|
3lexlogpow5ineq2.2 |
|- ( ph -> 3 <_ X ) |
3 |
|
1nn0 |
|- 1 e. NN0 |
4 |
|
1nn |
|- 1 e. NN |
5 |
3 4
|
decnncl |
|- ; 1 1 e. NN |
6 |
5
|
a1i |
|- ( ph -> ; 1 1 e. NN ) |
7 |
6
|
nnred |
|- ( ph -> ; 1 1 e. RR ) |
8 |
|
7re |
|- 7 e. RR |
9 |
8
|
a1i |
|- ( ph -> 7 e. RR ) |
10 |
|
0red |
|- ( ph -> 0 e. RR ) |
11 |
|
7pos |
|- 0 < 7 |
12 |
11
|
a1i |
|- ( ph -> 0 < 7 ) |
13 |
10 12
|
ltned |
|- ( ph -> 0 =/= 7 ) |
14 |
13
|
necomd |
|- ( ph -> 7 =/= 0 ) |
15 |
7 9 14
|
redivcld |
|- ( ph -> ( ; 1 1 / 7 ) e. RR ) |
16 |
|
2re |
|- 2 e. RR |
17 |
16
|
a1i |
|- ( ph -> 2 e. RR ) |
18 |
|
2pos |
|- 0 < 2 |
19 |
18
|
a1i |
|- ( ph -> 0 < 2 ) |
20 |
|
3re |
|- 3 e. RR |
21 |
20
|
a1i |
|- ( ph -> 3 e. RR ) |
22 |
|
3pos |
|- 0 < 3 |
23 |
22
|
a1i |
|- ( ph -> 0 < 3 ) |
24 |
10 21 1 23 2
|
ltletrd |
|- ( ph -> 0 < X ) |
25 |
|
1red |
|- ( ph -> 1 e. RR ) |
26 |
|
1lt2 |
|- 1 < 2 |
27 |
26
|
a1i |
|- ( ph -> 1 < 2 ) |
28 |
25 27
|
ltned |
|- ( ph -> 1 =/= 2 ) |
29 |
28
|
necomd |
|- ( ph -> 2 =/= 1 ) |
30 |
17 19 1 24 29
|
relogbcld |
|- ( ph -> ( 2 logb X ) e. RR ) |
31 |
|
5nn0 |
|- 5 e. NN0 |
32 |
31
|
a1i |
|- ( ph -> 5 e. NN0 ) |
33 |
|
7nn |
|- 7 e. NN |
34 |
33
|
a1i |
|- ( ph -> 7 e. NN ) |
35 |
34
|
nnrpd |
|- ( ph -> 7 e. RR+ ) |
36 |
|
0nn0 |
|- 0 e. NN0 |
37 |
|
tru |
|- T. |
38 |
|
0red |
|- ( T. -> 0 e. RR ) |
39 |
|
9re |
|- 9 e. RR |
40 |
39
|
a1i |
|- ( T. -> 9 e. RR ) |
41 |
|
9pos |
|- 0 < 9 |
42 |
41
|
a1i |
|- ( T. -> 0 < 9 ) |
43 |
38 40 42
|
ltled |
|- ( T. -> 0 <_ 9 ) |
44 |
37 43
|
ax-mp |
|- 0 <_ 9 |
45 |
4 3 36 44
|
declei |
|- 0 <_ ; 1 1 |
46 |
45
|
a1i |
|- ( ph -> 0 <_ ; 1 1 ) |
47 |
7 35 46
|
divge0d |
|- ( ph -> 0 <_ ( ; 1 1 / 7 ) ) |
48 |
17 19 21 23 29
|
relogbcld |
|- ( ph -> ( 2 logb 3 ) e. RR ) |
49 |
|
2exp11 |
|- ( 2 ^ ; 1 1 ) = ; ; ; 2 0 4 8 |
50 |
49
|
eqcomi |
|- ; ; ; 2 0 4 8 = ( 2 ^ ; 1 1 ) |
51 |
50
|
a1i |
|- ( ph -> ; ; ; 2 0 4 8 = ( 2 ^ ; 1 1 ) ) |
52 |
51
|
oveq2d |
|- ( ph -> ( 2 logb ; ; ; 2 0 4 8 ) = ( 2 logb ( 2 ^ ; 1 1 ) ) ) |
53 |
17 19
|
elrpd |
|- ( ph -> 2 e. RR+ ) |
54 |
6
|
nnzd |
|- ( ph -> ; 1 1 e. ZZ ) |
55 |
53 29 54
|
relogbexpd |
|- ( ph -> ( 2 logb ( 2 ^ ; 1 1 ) ) = ; 1 1 ) |
56 |
52 55
|
eqtrd |
|- ( ph -> ( 2 logb ; ; ; 2 0 4 8 ) = ; 1 1 ) |
57 |
56
|
eqcomd |
|- ( ph -> ; 1 1 = ( 2 logb ; ; ; 2 0 4 8 ) ) |
58 |
|
2z |
|- 2 e. ZZ |
59 |
58
|
a1i |
|- ( ph -> 2 e. ZZ ) |
60 |
17
|
leidd |
|- ( ph -> 2 <_ 2 ) |
61 |
|
2nn0 |
|- 2 e. NN0 |
62 |
61 36
|
deccl |
|- ; 2 0 e. NN0 |
63 |
|
4nn0 |
|- 4 e. NN0 |
64 |
62 63
|
deccl |
|- ; ; 2 0 4 e. NN0 |
65 |
|
8nn |
|- 8 e. NN |
66 |
64 65
|
decnncl |
|- ; ; ; 2 0 4 8 e. NN |
67 |
66
|
a1i |
|- ( ph -> ; ; ; 2 0 4 8 e. NN ) |
68 |
67
|
nnred |
|- ( ph -> ; ; ; 2 0 4 8 e. RR ) |
69 |
|
4nn |
|- 4 e. NN |
70 |
62 69
|
decnncl |
|- ; ; 2 0 4 e. NN |
71 |
|
8nn0 |
|- 8 e. NN0 |
72 |
70 71 36 44
|
decltdi |
|- 0 < ; ; ; 2 0 4 8 |
73 |
72
|
a1i |
|- ( ph -> 0 < ; ; ; 2 0 4 8 ) |
74 |
61 3
|
deccl |
|- ; 2 1 e. NN0 |
75 |
74 71
|
deccl |
|- ; ; 2 1 8 e. NN0 |
76 |
75 33
|
decnncl |
|- ; ; ; 2 1 8 7 e. NN |
77 |
76
|
a1i |
|- ( ph -> ; ; ; 2 1 8 7 e. NN ) |
78 |
77
|
nnred |
|- ( ph -> ; ; ; 2 1 8 7 e. RR ) |
79 |
74 65
|
decnncl |
|- ; ; 2 1 8 e. NN |
80 |
|
7nn0 |
|- 7 e. NN0 |
81 |
79 80 36 44
|
decltdi |
|- 0 < ; ; ; 2 1 8 7 |
82 |
81
|
a1i |
|- ( ph -> 0 < ; ; ; 2 1 8 7 ) |
83 |
|
8re |
|- 8 e. RR |
84 |
83 3
|
nn0addge1i |
|- 8 <_ ( 8 + 1 ) |
85 |
|
8p1e9 |
|- ( 8 + 1 ) = 9 |
86 |
84 85
|
breqtri |
|- 8 <_ 9 |
87 |
|
4lt10 |
|- 4 < ; 1 0 |
88 |
|
0lt1 |
|- 0 < 1 |
89 |
61 36 4 88
|
declt |
|- ; 2 0 < ; 2 1 |
90 |
62 74 63 71 87 89
|
decltc |
|- ; ; 2 0 4 < ; ; 2 1 8 |
91 |
64 75 71 80 86 90
|
decleh |
|- ; ; ; 2 0 4 8 <_ ; ; ; 2 1 8 7 |
92 |
91
|
a1i |
|- ( ph -> ; ; ; 2 0 4 8 <_ ; ; ; 2 1 8 7 ) |
93 |
59 60 68 73 78 82 92
|
logblebd |
|- ( ph -> ( 2 logb ; ; ; 2 0 4 8 ) <_ ( 2 logb ; ; ; 2 1 8 7 ) ) |
94 |
57 93
|
eqbrtrd |
|- ( ph -> ; 1 1 <_ ( 2 logb ; ; ; 2 1 8 7 ) ) |
95 |
7
|
recnd |
|- ( ph -> ; 1 1 e. CC ) |
96 |
9
|
recnd |
|- ( ph -> 7 e. CC ) |
97 |
95 96 14
|
divcan1d |
|- ( ph -> ( ( ; 1 1 / 7 ) x. 7 ) = ; 1 1 ) |
98 |
97
|
eqcomd |
|- ( ph -> ; 1 1 = ( ( ; 1 1 / 7 ) x. 7 ) ) |
99 |
|
3exp7 |
|- ( 3 ^ 7 ) = ; ; ; 2 1 8 7 |
100 |
99
|
eqcomi |
|- ; ; ; 2 1 8 7 = ( 3 ^ 7 ) |
101 |
100
|
a1i |
|- ( ph -> ; ; ; 2 1 8 7 = ( 3 ^ 7 ) ) |
102 |
101
|
oveq2d |
|- ( ph -> ( 2 logb ; ; ; 2 1 8 7 ) = ( 2 logb ( 3 ^ 7 ) ) ) |
103 |
21 23
|
elrpd |
|- ( ph -> 3 e. RR+ ) |
104 |
34
|
nnzd |
|- ( ph -> 7 e. ZZ ) |
105 |
53 29 103 104
|
relogbzexpd |
|- ( ph -> ( 2 logb ( 3 ^ 7 ) ) = ( 7 x. ( 2 logb 3 ) ) ) |
106 |
102 105
|
eqtrd |
|- ( ph -> ( 2 logb ; ; ; 2 1 8 7 ) = ( 7 x. ( 2 logb 3 ) ) ) |
107 |
48
|
recnd |
|- ( ph -> ( 2 logb 3 ) e. CC ) |
108 |
96 107
|
mulcomd |
|- ( ph -> ( 7 x. ( 2 logb 3 ) ) = ( ( 2 logb 3 ) x. 7 ) ) |
109 |
106 108
|
eqtrd |
|- ( ph -> ( 2 logb ; ; ; 2 1 8 7 ) = ( ( 2 logb 3 ) x. 7 ) ) |
110 |
94 98 109
|
3brtr3d |
|- ( ph -> ( ( ; 1 1 / 7 ) x. 7 ) <_ ( ( 2 logb 3 ) x. 7 ) ) |
111 |
15 48 35
|
lemul1d |
|- ( ph -> ( ( ; 1 1 / 7 ) <_ ( 2 logb 3 ) <-> ( ( ; 1 1 / 7 ) x. 7 ) <_ ( ( 2 logb 3 ) x. 7 ) ) ) |
112 |
110 111
|
mpbird |
|- ( ph -> ( ; 1 1 / 7 ) <_ ( 2 logb 3 ) ) |
113 |
59 60 21 23 1 24 2
|
logblebd |
|- ( ph -> ( 2 logb 3 ) <_ ( 2 logb X ) ) |
114 |
15 48 30 112 113
|
letrd |
|- ( ph -> ( ; 1 1 / 7 ) <_ ( 2 logb X ) ) |
115 |
15 30 32 47 114
|
leexp1ad |
|- ( ph -> ( ( ; 1 1 / 7 ) ^ 5 ) <_ ( ( 2 logb X ) ^ 5 ) ) |