Metamath Proof Explorer


Theorem 3exp7

Description: 3 to the power of 7 equals 2187. (Contributed by metakunt, 21-Aug-2024)

Ref Expression
Assertion 3exp7 37=2187

Proof

Step Hyp Ref Expression
1 3nn0 30
2 6nn0 60
3 6p1e7 6+1=7
4 7nn0 70
5 2nn0 20
6 4 5 deccl 720
7 9nn0 90
8 3cn 3
9 2cn 2
10 3t2e6 32=6
11 8 9 10 mulcomli 23=6
12 3exp3 33=27
13 5 4 deccl 270
14 eqid 27=27
15 1nn0 10
16 8nn0 80
17 15 16 deccl 180
18 0nn0 00
19 5 dec0h 2=02
20 eqid 18=18
21 13 nn0cni 27
22 21 mul02i 027=0
23 6cn 6
24 ax-1cn 1
25 23 24 3 addcomli 1+6=7
26 22 25 oveq12i 027+1+6=0+7
27 7cn 7
28 27 addlidi 0+7=7
29 26 28 eqtri 027+1+6=7
30 16 dec0h 8=08
31 2t2e4 22=4
32 9 addlidi 0+2=2
33 31 32 oveq12i 22+0+2=4+2
34 4p2e6 4+2=6
35 33 34 eqtri 22+0+2=6
36 4nn0 40
37 7t2e14 72=14
38 27 9 37 mulcomli 27=14
39 1p1e2 1+1=2
40 8cn 8
41 4cn 4
42 8p4e12 8+4=12
43 40 41 42 addcomli 4+8=12
44 15 36 16 38 39 5 43 decaddci 27+8=22
45 5 4 18 16 14 30 5 5 5 35 44 decma2c 227+8=62
46 18 5 15 16 19 20 13 5 2 29 45 decmac 227+18=72
47 4p4e8 4+4=8
48 15 36 36 37 47 decaddi 72+4=18
49 7t7e49 77=49
50 4 5 4 14 7 36 48 49 decmul2c 727=189
51 13 5 4 14 7 17 46 50 decmul1c 2727=729
52 1 1 11 12 51 numexp2x 36=729
53 eqid 72=72
54 7t3e21 73=21
55 1p0e1 1+0=1
56 5 15 18 54 55 decaddi 73+0=21
57 11 oveq1i 23+2=6+2
58 6p2e8 6+2=8
59 57 58 eqtri 23+2=8
60 4 5 18 5 53 19 1 56 59 decma 723+2=218
61 9t3e27 93=27
62 1 6 7 52 4 5 60 61 decmul1c 363=2187
63 1 2 3 62 numexpp1 37=2187