Metamath Proof Explorer


Theorem 3exp7

Description: 3 to the power of 7 equals 2187. (Contributed by metakunt, 21-Aug-2024)

Ref Expression
Assertion 3exp7 ( 3 ↑ 7 ) = 2 1 8 7

Proof

Step Hyp Ref Expression
1 3nn0 3 ∈ ℕ0
2 6nn0 6 ∈ ℕ0
3 6p1e7 ( 6 + 1 ) = 7
4 7nn0 7 ∈ ℕ0
5 2nn0 2 ∈ ℕ0
6 4 5 deccl 7 2 ∈ ℕ0
7 9nn0 9 ∈ ℕ0
8 3cn 3 ∈ ℂ
9 2cn 2 ∈ ℂ
10 3t2e6 ( 3 · 2 ) = 6
11 8 9 10 mulcomli ( 2 · 3 ) = 6
12 3exp3 ( 3 ↑ 3 ) = 2 7
13 5 4 deccl 2 7 ∈ ℕ0
14 eqid 2 7 = 2 7
15 1nn0 1 ∈ ℕ0
16 8nn0 8 ∈ ℕ0
17 15 16 deccl 1 8 ∈ ℕ0
18 0nn0 0 ∈ ℕ0
19 5 dec0h 2 = 0 2
20 eqid 1 8 = 1 8
21 13 nn0cni 2 7 ∈ ℂ
22 21 mul02i ( 0 · 2 7 ) = 0
23 6cn 6 ∈ ℂ
24 ax-1cn 1 ∈ ℂ
25 23 24 3 addcomli ( 1 + 6 ) = 7
26 22 25 oveq12i ( ( 0 · 2 7 ) + ( 1 + 6 ) ) = ( 0 + 7 )
27 7cn 7 ∈ ℂ
28 27 addid2i ( 0 + 7 ) = 7
29 26 28 eqtri ( ( 0 · 2 7 ) + ( 1 + 6 ) ) = 7
30 16 dec0h 8 = 0 8
31 2t2e4 ( 2 · 2 ) = 4
32 9 addid2i ( 0 + 2 ) = 2
33 31 32 oveq12i ( ( 2 · 2 ) + ( 0 + 2 ) ) = ( 4 + 2 )
34 4p2e6 ( 4 + 2 ) = 6
35 33 34 eqtri ( ( 2 · 2 ) + ( 0 + 2 ) ) = 6
36 4nn0 4 ∈ ℕ0
37 7t2e14 ( 7 · 2 ) = 1 4
38 27 9 37 mulcomli ( 2 · 7 ) = 1 4
39 1p1e2 ( 1 + 1 ) = 2
40 8cn 8 ∈ ℂ
41 4cn 4 ∈ ℂ
42 8p4e12 ( 8 + 4 ) = 1 2
43 40 41 42 addcomli ( 4 + 8 ) = 1 2
44 15 36 16 38 39 5 43 decaddci ( ( 2 · 7 ) + 8 ) = 2 2
45 5 4 18 16 14 30 5 5 5 35 44 decma2c ( ( 2 · 2 7 ) + 8 ) = 6 2
46 18 5 15 16 19 20 13 5 2 29 45 decmac ( ( 2 · 2 7 ) + 1 8 ) = 7 2
47 4p4e8 ( 4 + 4 ) = 8
48 15 36 36 37 47 decaddi ( ( 7 · 2 ) + 4 ) = 1 8
49 7t7e49 ( 7 · 7 ) = 4 9
50 4 5 4 14 7 36 48 49 decmul2c ( 7 · 2 7 ) = 1 8 9
51 13 5 4 14 7 17 46 50 decmul1c ( 2 7 · 2 7 ) = 7 2 9
52 1 1 11 12 51 numexp2x ( 3 ↑ 6 ) = 7 2 9
53 eqid 7 2 = 7 2
54 7t3e21 ( 7 · 3 ) = 2 1
55 1p0e1 ( 1 + 0 ) = 1
56 5 15 18 54 55 decaddi ( ( 7 · 3 ) + 0 ) = 2 1
57 11 oveq1i ( ( 2 · 3 ) + 2 ) = ( 6 + 2 )
58 6p2e8 ( 6 + 2 ) = 8
59 57 58 eqtri ( ( 2 · 3 ) + 2 ) = 8
60 4 5 18 5 53 19 1 56 59 decma ( ( 7 2 · 3 ) + 2 ) = 2 1 8
61 9t3e27 ( 9 · 3 ) = 2 7
62 1 6 7 52 4 5 60 61 decmul1c ( ( 3 ↑ 6 ) · 3 ) = 2 1 8 7
63 1 2 3 62 numexpp1 ( 3 ↑ 7 ) = 2 1 8 7