Description: 3 to the power of 7 equals 2187. (Contributed by metakunt, 21-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3exp7 | ⊢ ( 3 ↑ 7 ) = ; ; ; 2 1 8 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 2 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 3 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
| 4 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 5 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 6 | 4 5 | deccl | ⊢ ; 7 2 ∈ ℕ0 |
| 7 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
| 8 | 3cn | ⊢ 3 ∈ ℂ | |
| 9 | 2cn | ⊢ 2 ∈ ℂ | |
| 10 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 11 | 8 9 10 | mulcomli | ⊢ ( 2 · 3 ) = 6 |
| 12 | 3exp3 | ⊢ ( 3 ↑ 3 ) = ; 2 7 | |
| 13 | 5 4 | deccl | ⊢ ; 2 7 ∈ ℕ0 |
| 14 | eqid | ⊢ ; 2 7 = ; 2 7 | |
| 15 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 16 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 17 | 15 16 | deccl | ⊢ ; 1 8 ∈ ℕ0 |
| 18 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 19 | 5 | dec0h | ⊢ 2 = ; 0 2 |
| 20 | eqid | ⊢ ; 1 8 = ; 1 8 | |
| 21 | 13 | nn0cni | ⊢ ; 2 7 ∈ ℂ |
| 22 | 21 | mul02i | ⊢ ( 0 · ; 2 7 ) = 0 |
| 23 | 6cn | ⊢ 6 ∈ ℂ | |
| 24 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 25 | 23 24 3 | addcomli | ⊢ ( 1 + 6 ) = 7 |
| 26 | 22 25 | oveq12i | ⊢ ( ( 0 · ; 2 7 ) + ( 1 + 6 ) ) = ( 0 + 7 ) |
| 27 | 7cn | ⊢ 7 ∈ ℂ | |
| 28 | 27 | addlidi | ⊢ ( 0 + 7 ) = 7 |
| 29 | 26 28 | eqtri | ⊢ ( ( 0 · ; 2 7 ) + ( 1 + 6 ) ) = 7 |
| 30 | 16 | dec0h | ⊢ 8 = ; 0 8 |
| 31 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 32 | 9 | addlidi | ⊢ ( 0 + 2 ) = 2 |
| 33 | 31 32 | oveq12i | ⊢ ( ( 2 · 2 ) + ( 0 + 2 ) ) = ( 4 + 2 ) |
| 34 | 4p2e6 | ⊢ ( 4 + 2 ) = 6 | |
| 35 | 33 34 | eqtri | ⊢ ( ( 2 · 2 ) + ( 0 + 2 ) ) = 6 |
| 36 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 37 | 7t2e14 | ⊢ ( 7 · 2 ) = ; 1 4 | |
| 38 | 27 9 37 | mulcomli | ⊢ ( 2 · 7 ) = ; 1 4 |
| 39 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 40 | 8cn | ⊢ 8 ∈ ℂ | |
| 41 | 4cn | ⊢ 4 ∈ ℂ | |
| 42 | 8p4e12 | ⊢ ( 8 + 4 ) = ; 1 2 | |
| 43 | 40 41 42 | addcomli | ⊢ ( 4 + 8 ) = ; 1 2 |
| 44 | 15 36 16 38 39 5 43 | decaddci | ⊢ ( ( 2 · 7 ) + 8 ) = ; 2 2 |
| 45 | 5 4 18 16 14 30 5 5 5 35 44 | decma2c | ⊢ ( ( 2 · ; 2 7 ) + 8 ) = ; 6 2 |
| 46 | 18 5 15 16 19 20 13 5 2 29 45 | decmac | ⊢ ( ( 2 · ; 2 7 ) + ; 1 8 ) = ; 7 2 |
| 47 | 4p4e8 | ⊢ ( 4 + 4 ) = 8 | |
| 48 | 15 36 36 37 47 | decaddi | ⊢ ( ( 7 · 2 ) + 4 ) = ; 1 8 |
| 49 | 7t7e49 | ⊢ ( 7 · 7 ) = ; 4 9 | |
| 50 | 4 5 4 14 7 36 48 49 | decmul2c | ⊢ ( 7 · ; 2 7 ) = ; ; 1 8 9 |
| 51 | 13 5 4 14 7 17 46 50 | decmul1c | ⊢ ( ; 2 7 · ; 2 7 ) = ; ; 7 2 9 |
| 52 | 1 1 11 12 51 | numexp2x | ⊢ ( 3 ↑ 6 ) = ; ; 7 2 9 |
| 53 | eqid | ⊢ ; 7 2 = ; 7 2 | |
| 54 | 7t3e21 | ⊢ ( 7 · 3 ) = ; 2 1 | |
| 55 | 1p0e1 | ⊢ ( 1 + 0 ) = 1 | |
| 56 | 5 15 18 54 55 | decaddi | ⊢ ( ( 7 · 3 ) + 0 ) = ; 2 1 |
| 57 | 11 | oveq1i | ⊢ ( ( 2 · 3 ) + 2 ) = ( 6 + 2 ) |
| 58 | 6p2e8 | ⊢ ( 6 + 2 ) = 8 | |
| 59 | 57 58 | eqtri | ⊢ ( ( 2 · 3 ) + 2 ) = 8 |
| 60 | 4 5 18 5 53 19 1 56 59 | decma | ⊢ ( ( ; 7 2 · 3 ) + 2 ) = ; ; 2 1 8 |
| 61 | 9t3e27 | ⊢ ( 9 · 3 ) = ; 2 7 | |
| 62 | 1 6 7 52 4 5 60 61 | decmul1c | ⊢ ( ( 3 ↑ 6 ) · 3 ) = ; ; ; 2 1 8 7 |
| 63 | 1 2 3 62 | numexpp1 | ⊢ ( 3 ↑ 7 ) = ; ; ; 2 1 8 7 |