Description: First inequality in inequality chain, proposed by Mario Carneiro (Contributed by metakunt, 22-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 3lexlogpow5ineq1 | ⊢ 9 < ( ( ; 1 1 / 7 ) ↑ 5 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ 5 = 5 | |
2 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
3 | 2 | oveq1i | ⊢ ( ( 2 + 2 ) + 1 ) = ( 4 + 1 ) |
4 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
5 | 3 4 | eqtri | ⊢ ( ( 2 + 2 ) + 1 ) = 5 |
6 | 1 5 | eqtr4i | ⊢ 5 = ( ( 2 + 2 ) + 1 ) |
7 | 6 | oveq2i | ⊢ ( 7 ↑ 5 ) = ( 7 ↑ ( ( 2 + 2 ) + 1 ) ) |
8 | 7cn | ⊢ 7 ∈ ℂ | |
9 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
10 | 9 9 | nn0addcli | ⊢ ( 2 + 2 ) ∈ ℕ0 |
11 | 8 10 | pm3.2i | ⊢ ( 7 ∈ ℂ ∧ ( 2 + 2 ) ∈ ℕ0 ) |
12 | expp1 | ⊢ ( ( 7 ∈ ℂ ∧ ( 2 + 2 ) ∈ ℕ0 ) → ( 7 ↑ ( ( 2 + 2 ) + 1 ) ) = ( ( 7 ↑ ( 2 + 2 ) ) · 7 ) ) | |
13 | 11 12 | ax-mp | ⊢ ( 7 ↑ ( ( 2 + 2 ) + 1 ) ) = ( ( 7 ↑ ( 2 + 2 ) ) · 7 ) |
14 | 8 9 9 | 3pm3.2i | ⊢ ( 7 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) |
15 | expadd | ⊢ ( ( 7 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( 7 ↑ ( 2 + 2 ) ) = ( ( 7 ↑ 2 ) · ( 7 ↑ 2 ) ) ) | |
16 | 14 15 | ax-mp | ⊢ ( 7 ↑ ( 2 + 2 ) ) = ( ( 7 ↑ 2 ) · ( 7 ↑ 2 ) ) |
17 | 8 | sqvali | ⊢ ( 7 ↑ 2 ) = ( 7 · 7 ) |
18 | 7t7e49 | ⊢ ( 7 · 7 ) = ; 4 9 | |
19 | 17 18 | eqtri | ⊢ ( 7 ↑ 2 ) = ; 4 9 |
20 | 19 19 | oveq12i | ⊢ ( ( 7 ↑ 2 ) · ( 7 ↑ 2 ) ) = ( ; 4 9 · ; 4 9 ) |
21 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
22 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
23 | 21 22 | deccl | ⊢ ; 4 9 ∈ ℕ0 |
24 | eqid | ⊢ ; 4 9 = ; 4 9 | |
25 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
26 | 21 21 | deccl | ⊢ ; 4 4 ∈ ℕ0 |
27 | eqid | ⊢ ; 4 4 = ; 4 4 | |
28 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
29 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
30 | 21 21 | nn0addcli | ⊢ ( 4 + 4 ) ∈ ℕ0 |
31 | 4t4e16 | ⊢ ( 4 · 4 ) = ; 1 6 | |
32 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
33 | 4p4e8 | ⊢ ( 4 + 4 ) = 8 | |
34 | 33 | oveq2i | ⊢ ( 6 + ( 4 + 4 ) ) = ( 6 + 8 ) |
35 | 8cn | ⊢ 8 ∈ ℂ | |
36 | 6cn | ⊢ 6 ∈ ℂ | |
37 | 8p6e14 | ⊢ ( 8 + 6 ) = ; 1 4 | |
38 | 35 36 37 | addcomli | ⊢ ( 6 + 8 ) = ; 1 4 |
39 | 34 38 | eqtri | ⊢ ( 6 + ( 4 + 4 ) ) = ; 1 4 |
40 | 25 29 30 31 32 21 39 | decaddci | ⊢ ( ( 4 · 4 ) + ( 4 + 4 ) ) = ; 2 4 |
41 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
42 | 9t4e36 | ⊢ ( 9 · 4 ) = ; 3 6 | |
43 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
44 | 6p4e10 | ⊢ ( 6 + 4 ) = ; 1 0 | |
45 | 41 29 21 42 43 44 | decaddci2 | ⊢ ( ( 9 · 4 ) + 4 ) = ; 4 0 |
46 | 21 22 21 21 24 27 21 28 21 40 45 | decmac | ⊢ ( ( ; 4 9 · 4 ) + ; 4 4 ) = ; ; 2 4 0 |
47 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
48 | 9cn | ⊢ 9 ∈ ℂ | |
49 | 4cn | ⊢ 4 ∈ ℂ | |
50 | 48 49 42 | mulcomli | ⊢ ( 4 · 9 ) = ; 3 6 |
51 | 41 29 47 50 43 21 38 | decaddci | ⊢ ( ( 4 · 9 ) + 8 ) = ; 4 4 |
52 | 9t9e81 | ⊢ ( 9 · 9 ) = ; 8 1 | |
53 | 22 21 22 24 25 47 51 52 | decmul1c | ⊢ ( ; 4 9 · 9 ) = ; ; 4 4 1 |
54 | 23 21 22 24 25 26 46 53 | decmul2c | ⊢ ( ; 4 9 · ; 4 9 ) = ; ; ; 2 4 0 1 |
55 | 20 54 | eqtri | ⊢ ( ( 7 ↑ 2 ) · ( 7 ↑ 2 ) ) = ; ; ; 2 4 0 1 |
56 | 16 55 | eqtri | ⊢ ( 7 ↑ ( 2 + 2 ) ) = ; ; ; 2 4 0 1 |
57 | 56 | oveq1i | ⊢ ( ( 7 ↑ ( 2 + 2 ) ) · 7 ) = ( ; ; ; 2 4 0 1 · 7 ) |
58 | 7 13 57 | 3eqtri | ⊢ ( 7 ↑ 5 ) = ( ; ; ; 2 4 0 1 · 7 ) |
59 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
60 | 9 21 | deccl | ⊢ ; 2 4 ∈ ℕ0 |
61 | 60 28 | deccl | ⊢ ; ; 2 4 0 ∈ ℕ0 |
62 | eqid | ⊢ ; ; ; 2 4 0 1 = ; ; ; 2 4 0 1 | |
63 | 25 29 | deccl | ⊢ ; 1 6 ∈ ℕ0 |
64 | 63 47 | deccl | ⊢ ; ; 1 6 8 ∈ ℕ0 |
65 | eqid | ⊢ ; ; 2 4 0 = ; ; 2 4 0 | |
66 | eqid | ⊢ ; 2 4 = ; 2 4 | |
67 | 2cn | ⊢ 2 ∈ ℂ | |
68 | 7t2e14 | ⊢ ( 7 · 2 ) = ; 1 4 | |
69 | 8 67 68 | mulcomli | ⊢ ( 2 · 7 ) = ; 1 4 |
70 | 4p2e6 | ⊢ ( 4 + 2 ) = 6 | |
71 | 25 21 9 69 70 | decaddi | ⊢ ( ( 2 · 7 ) + 2 ) = ; 1 6 |
72 | 7t4e28 | ⊢ ( 7 · 4 ) = ; 2 8 | |
73 | 8 49 72 | mulcomli | ⊢ ( 4 · 7 ) = ; 2 8 |
74 | 59 9 21 66 47 9 71 73 | decmul1c | ⊢ ( ; 2 4 · 7 ) = ; ; 1 6 8 |
75 | 35 | addid1i | ⊢ ( 8 + 0 ) = 8 |
76 | 63 47 28 74 75 | decaddi | ⊢ ( ( ; 2 4 · 7 ) + 0 ) = ; ; 1 6 8 |
77 | 0cn | ⊢ 0 ∈ ℂ | |
78 | 8 | mul01i | ⊢ ( 7 · 0 ) = 0 |
79 | 28 | dec0h | ⊢ 0 = ; 0 0 |
80 | 79 | eqcomi | ⊢ ; 0 0 = 0 |
81 | 78 80 | eqtr4i | ⊢ ( 7 · 0 ) = ; 0 0 |
82 | 8 77 81 | mulcomli | ⊢ ( 0 · 7 ) = ; 0 0 |
83 | 59 60 28 65 28 28 76 82 | decmul1c | ⊢ ( ; ; 2 4 0 · 7 ) = ; ; ; 1 6 8 0 |
84 | 00id | ⊢ ( 0 + 0 ) = 0 | |
85 | 64 28 28 83 84 | decaddi | ⊢ ( ( ; ; 2 4 0 · 7 ) + 0 ) = ; ; ; 1 6 8 0 |
86 | ax-1cn | ⊢ 1 ∈ ℂ | |
87 | 8 | mulid1i | ⊢ ( 7 · 1 ) = 7 |
88 | 59 | dec0h | ⊢ 7 = ; 0 7 |
89 | 88 | eqcomi | ⊢ ; 0 7 = 7 |
90 | 87 89 | eqtr4i | ⊢ ( 7 · 1 ) = ; 0 7 |
91 | 8 86 90 | mulcomli | ⊢ ( 1 · 7 ) = ; 0 7 |
92 | 59 61 25 62 59 28 85 91 | decmul1c | ⊢ ( ; ; ; 2 4 0 1 · 7 ) = ; ; ; ; 1 6 8 0 7 |
93 | 58 92 | eqtri | ⊢ ( 7 ↑ 5 ) = ; ; ; ; 1 6 8 0 7 |
94 | 93 | oveq2i | ⊢ ( 9 · ( 7 ↑ 5 ) ) = ( 9 · ; ; ; ; 1 6 8 0 7 ) |
95 | 64 28 | deccl | ⊢ ; ; ; 1 6 8 0 ∈ ℕ0 |
96 | 95 59 | deccl | ⊢ ; ; ; ; 1 6 8 0 7 ∈ ℕ0 |
97 | 96 | nn0cni | ⊢ ; ; ; ; 1 6 8 0 7 ∈ ℂ |
98 | 48 97 | mulcomi | ⊢ ( 9 · ; ; ; ; 1 6 8 0 7 ) = ( ; ; ; ; 1 6 8 0 7 · 9 ) |
99 | eqid | ⊢ ; ; ; ; 1 6 8 0 7 = ; ; ; ; 1 6 8 0 7 | |
100 | eqid | ⊢ ; ; ; 1 6 8 0 = ; ; ; 1 6 8 0 | |
101 | 29 | dec0h | ⊢ 6 = ; 0 6 |
102 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
103 | 25 102 | deccl | ⊢ ; 1 5 ∈ ℕ0 |
104 | 103 25 | deccl | ⊢ ; ; 1 5 1 ∈ ℕ0 |
105 | eqid | ⊢ ; ; 1 6 8 = ; ; 1 6 8 | |
106 | eqid | ⊢ ; 1 6 = ; 1 6 | |
107 | 48 | mulid2i | ⊢ ( 1 · 9 ) = 9 |
108 | 36 | addid2i | ⊢ ( 0 + 6 ) = 6 |
109 | 107 108 | oveq12i | ⊢ ( ( 1 · 9 ) + ( 0 + 6 ) ) = ( 9 + 6 ) |
110 | 9p6e15 | ⊢ ( 9 + 6 ) = ; 1 5 | |
111 | 109 110 | eqtri | ⊢ ( ( 1 · 9 ) + ( 0 + 6 ) ) = ; 1 5 |
112 | 9t6e54 | ⊢ ( 9 · 6 ) = ; 5 4 | |
113 | 48 36 112 | mulcomli | ⊢ ( 6 · 9 ) = ; 5 4 |
114 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
115 | 7p4e11 | ⊢ ( 7 + 4 ) = ; 1 1 | |
116 | 8 49 115 | addcomli | ⊢ ( 4 + 7 ) = ; 1 1 |
117 | 102 21 59 113 114 25 116 | decaddci | ⊢ ( ( 6 · 9 ) + 7 ) = ; 6 1 |
118 | 25 29 28 59 106 88 22 25 29 111 117 | decmac | ⊢ ( ( ; 1 6 · 9 ) + 7 ) = ; ; 1 5 1 |
119 | 9t8e72 | ⊢ ( 9 · 8 ) = ; 7 2 | |
120 | 48 35 119 | mulcomli | ⊢ ( 8 · 9 ) = ; 7 2 |
121 | 22 63 47 105 9 59 118 120 | decmul1c | ⊢ ( ; ; 1 6 8 · 9 ) = ; ; ; 1 5 1 2 |
122 | 67 | addid1i | ⊢ ( 2 + 0 ) = 2 |
123 | 104 9 28 121 122 | decaddi | ⊢ ( ( ; ; 1 6 8 · 9 ) + 0 ) = ; ; ; 1 5 1 2 |
124 | 48 | mul02i | ⊢ ( 0 · 9 ) = 0 |
125 | 124 | oveq1i | ⊢ ( ( 0 · 9 ) + 6 ) = ( 0 + 6 ) |
126 | 125 108 | eqtri | ⊢ ( ( 0 · 9 ) + 6 ) = 6 |
127 | 64 28 28 29 100 101 22 123 126 | decma | ⊢ ( ( ; ; ; 1 6 8 0 · 9 ) + 6 ) = ; ; ; ; 1 5 1 2 6 |
128 | 9t7e63 | ⊢ ( 9 · 7 ) = ; 6 3 | |
129 | 48 8 128 | mulcomli | ⊢ ( 7 · 9 ) = ; 6 3 |
130 | 22 95 59 99 41 29 127 129 | decmul1c | ⊢ ( ; ; ; ; 1 6 8 0 7 · 9 ) = ; ; ; ; ; 1 5 1 2 6 3 |
131 | 104 9 | deccl | ⊢ ; ; ; 1 5 1 2 ∈ ℕ0 |
132 | 131 29 | deccl | ⊢ ; ; ; ; 1 5 1 2 6 ∈ ℕ0 |
133 | 63 25 | deccl | ⊢ ; ; 1 6 1 ∈ ℕ0 |
134 | 133 28 | deccl | ⊢ ; ; ; 1 6 1 0 ∈ ℕ0 |
135 | 134 102 | deccl | ⊢ ; ; ; ; 1 6 1 0 5 ∈ ℕ0 |
136 | 3lt10 | ⊢ 3 < ; 1 0 | |
137 | 6lt10 | ⊢ 6 < ; 1 0 | |
138 | 2lt10 | ⊢ 2 < ; 1 0 | |
139 | 1lt10 | ⊢ 1 < ; 1 0 | |
140 | 6nn | ⊢ 6 ∈ ℕ | |
141 | 5lt6 | ⊢ 5 < 6 | |
142 | 25 102 140 141 | declt | ⊢ ; 1 5 < ; 1 6 |
143 | 103 63 25 25 139 142 | decltc | ⊢ ; ; 1 5 1 < ; ; 1 6 1 |
144 | 104 133 9 28 138 143 | decltc | ⊢ ; ; ; 1 5 1 2 < ; ; ; 1 6 1 0 |
145 | 131 134 29 102 137 144 | decltc | ⊢ ; ; ; ; 1 5 1 2 6 < ; ; ; ; 1 6 1 0 5 |
146 | 132 135 41 25 136 145 | decltc | ⊢ ; ; ; ; ; 1 5 1 2 6 3 < ; ; ; ; ; 1 6 1 0 5 1 |
147 | 130 146 | eqbrtri | ⊢ ( ; ; ; ; 1 6 8 0 7 · 9 ) < ; ; ; ; ; 1 6 1 0 5 1 |
148 | 98 147 | eqbrtri | ⊢ ( 9 · ; ; ; ; 1 6 8 0 7 ) < ; ; ; ; ; 1 6 1 0 5 1 |
149 | 94 148 | eqbrtri | ⊢ ( 9 · ( 7 ↑ 5 ) ) < ; ; ; ; ; 1 6 1 0 5 1 |
150 | 4 | eqcomi | ⊢ 5 = ( 4 + 1 ) |
151 | 150 | oveq2i | ⊢ ( ; 1 1 ↑ 5 ) = ( ; 1 1 ↑ ( 4 + 1 ) ) |
152 | 25 25 | deccl | ⊢ ; 1 1 ∈ ℕ0 |
153 | 152 | nn0cni | ⊢ ; 1 1 ∈ ℂ |
154 | 153 21 | pm3.2i | ⊢ ( ; 1 1 ∈ ℂ ∧ 4 ∈ ℕ0 ) |
155 | expp1 | ⊢ ( ( ; 1 1 ∈ ℂ ∧ 4 ∈ ℕ0 ) → ( ; 1 1 ↑ ( 4 + 1 ) ) = ( ( ; 1 1 ↑ 4 ) · ; 1 1 ) ) | |
156 | 154 155 | ax-mp | ⊢ ( ; 1 1 ↑ ( 4 + 1 ) ) = ( ( ; 1 1 ↑ 4 ) · ; 1 1 ) |
157 | 2 | eqcomi | ⊢ 4 = ( 2 + 2 ) |
158 | 157 | oveq2i | ⊢ ( ; 1 1 ↑ 4 ) = ( ; 1 1 ↑ ( 2 + 2 ) ) |
159 | 153 9 9 | 3pm3.2i | ⊢ ( ; 1 1 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) |
160 | expadd | ⊢ ( ( ; 1 1 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( ; 1 1 ↑ ( 2 + 2 ) ) = ( ( ; 1 1 ↑ 2 ) · ( ; 1 1 ↑ 2 ) ) ) | |
161 | 159 160 | ax-mp | ⊢ ( ; 1 1 ↑ ( 2 + 2 ) ) = ( ( ; 1 1 ↑ 2 ) · ( ; 1 1 ↑ 2 ) ) |
162 | 153 | sqvali | ⊢ ( ; 1 1 ↑ 2 ) = ( ; 1 1 · ; 1 1 ) |
163 | eqid | ⊢ ; 1 1 = ; 1 1 | |
164 | 153 | mulid2i | ⊢ ( 1 · ; 1 1 ) = ; 1 1 |
165 | 25 25 32 164 | decsuc | ⊢ ( ( 1 · ; 1 1 ) + 1 ) = ; 1 2 |
166 | 152 25 25 163 25 25 165 164 | decmul1c | ⊢ ( ; 1 1 · ; 1 1 ) = ; ; 1 2 1 |
167 | 162 166 | eqtri | ⊢ ( ; 1 1 ↑ 2 ) = ; ; 1 2 1 |
168 | 167 167 | oveq12i | ⊢ ( ( ; 1 1 ↑ 2 ) · ( ; 1 1 ↑ 2 ) ) = ( ; ; 1 2 1 · ; ; 1 2 1 ) |
169 | 25 9 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
170 | 169 25 | deccl | ⊢ ; ; 1 2 1 ∈ ℕ0 |
171 | eqid | ⊢ ; ; 1 2 1 = ; ; 1 2 1 | |
172 | eqid | ⊢ ; 1 2 = ; 1 2 | |
173 | 170 | nn0cni | ⊢ ; ; 1 2 1 ∈ ℂ |
174 | 173 | mulid2i | ⊢ ( 1 · ; ; 1 2 1 ) = ; ; 1 2 1 |
175 | 25 | dec0h | ⊢ 1 = ; 0 1 |
176 | 67 | addid2i | ⊢ ( 0 + 2 ) = 2 |
177 | 49 86 4 | addcomli | ⊢ ( 1 + 4 ) = 5 |
178 | 28 25 9 21 175 66 176 177 | decadd | ⊢ ( 1 + ; 2 4 ) = ; 2 5 |
179 | 25 9 9 172 2 | decaddi | ⊢ ( ; 1 2 + 2 ) = ; 1 4 |
180 | 5cn | ⊢ 5 ∈ ℂ | |
181 | 180 86 114 | addcomli | ⊢ ( 1 + 5 ) = 6 |
182 | 169 25 9 102 174 178 179 181 | decadd | ⊢ ( ( 1 · ; ; 1 2 1 ) + ( 1 + ; 2 4 ) ) = ; ; 1 4 6 |
183 | 9 | dec0h | ⊢ 2 = ; 0 2 |
184 | 28 28 | nn0addcli | ⊢ ( 0 + 0 ) ∈ ℕ0 |
185 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
186 | 185 | oveq1i | ⊢ ( ( 2 · 1 ) + 0 ) = ( 2 + 0 ) |
187 | 186 122 | eqtri | ⊢ ( ( 2 · 1 ) + 0 ) = 2 |
188 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
189 | 21 | dec0h | ⊢ 4 = ; 0 4 |
190 | 189 | eqcomi | ⊢ ; 0 4 = 4 |
191 | 188 190 | eqtr4i | ⊢ ( 2 · 2 ) = ; 0 4 |
192 | 9 25 9 172 21 28 187 191 | decmul2c | ⊢ ( 2 · ; 1 2 ) = ; 2 4 |
193 | 84 | oveq2i | ⊢ ( 4 + ( 0 + 0 ) ) = ( 4 + 0 ) |
194 | 49 | addid1i | ⊢ ( 4 + 0 ) = 4 |
195 | 193 194 | eqtri | ⊢ ( 4 + ( 0 + 0 ) ) = 4 |
196 | 9 21 184 192 195 | decaddi | ⊢ ( ( 2 · ; 1 2 ) + ( 0 + 0 ) ) = ; 2 4 |
197 | 185 | oveq1i | ⊢ ( ( 2 · 1 ) + 2 ) = ( 2 + 2 ) |
198 | 197 2 | eqtri | ⊢ ( ( 2 · 1 ) + 2 ) = 4 |
199 | 198 190 | eqtr4i | ⊢ ( ( 2 · 1 ) + 2 ) = ; 0 4 |
200 | 169 25 28 9 171 183 9 21 28 196 199 | decma2c | ⊢ ( ( 2 · ; ; 1 2 1 ) + 2 ) = ; ; 2 4 4 |
201 | 25 9 25 9 172 172 170 21 60 182 200 | decmac | ⊢ ( ( ; 1 2 · ; ; 1 2 1 ) + ; 1 2 ) = ; ; ; 1 4 6 4 |
202 | 170 169 25 171 25 169 201 174 | decmul1c | ⊢ ( ; ; 1 2 1 · ; ; 1 2 1 ) = ; ; ; ; 1 4 6 4 1 |
203 | 168 202 | eqtri | ⊢ ( ( ; 1 1 ↑ 2 ) · ( ; 1 1 ↑ 2 ) ) = ; ; ; ; 1 4 6 4 1 |
204 | 161 203 | eqtri | ⊢ ( ; 1 1 ↑ ( 2 + 2 ) ) = ; ; ; ; 1 4 6 4 1 |
205 | 158 204 | eqtri | ⊢ ( ; 1 1 ↑ 4 ) = ; ; ; ; 1 4 6 4 1 |
206 | 205 | oveq1i | ⊢ ( ( ; 1 1 ↑ 4 ) · ; 1 1 ) = ( ; ; ; ; 1 4 6 4 1 · ; 1 1 ) |
207 | 156 206 | eqtri | ⊢ ( ; 1 1 ↑ ( 4 + 1 ) ) = ( ; ; ; ; 1 4 6 4 1 · ; 1 1 ) |
208 | 151 207 | eqtri | ⊢ ( ; 1 1 ↑ 5 ) = ( ; ; ; ; 1 4 6 4 1 · ; 1 1 ) |
209 | 25 21 | deccl | ⊢ ; 1 4 ∈ ℕ0 |
210 | 209 29 | deccl | ⊢ ; ; 1 4 6 ∈ ℕ0 |
211 | 210 21 | deccl | ⊢ ; ; ; 1 4 6 4 ∈ ℕ0 |
212 | eqid | ⊢ ; ; ; ; 1 4 6 4 1 = ; ; ; ; 1 4 6 4 1 | |
213 | eqid | ⊢ ; ; ; 1 4 6 4 = ; ; ; 1 4 6 4 | |
214 | eqid | ⊢ ; ; 1 4 6 = ; ; 1 4 6 | |
215 | 194 190 | eqtr4i | ⊢ ( 4 + 0 ) = ; 0 4 |
216 | 49 77 215 | addcomli | ⊢ ( 0 + 4 ) = ; 0 4 |
217 | eqid | ⊢ ; 1 4 = ; 1 4 | |
218 | 8 | addid1i | ⊢ ( 7 + 0 ) = 7 |
219 | 218 89 | eqtr4i | ⊢ ( 7 + 0 ) = ; 0 7 |
220 | 8 77 219 | addcomli | ⊢ ( 0 + 7 ) = ; 0 7 |
221 | 28 102 | nn0addcli | ⊢ ( 0 + 5 ) ∈ ℕ0 |
222 | 180 | addid2i | ⊢ ( 0 + 5 ) = 5 |
223 | 222 | oveq2i | ⊢ ( 1 + ( 0 + 5 ) ) = ( 1 + 5 ) |
224 | 223 181 | eqtri | ⊢ ( 1 + ( 0 + 5 ) ) = 6 |
225 | 25 25 221 164 224 | decaddi | ⊢ ( ( 1 · ; 1 1 ) + ( 0 + 5 ) ) = ; 1 6 |
226 | 49 | mulid1i | ⊢ ( 4 · 1 ) = 4 |
227 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
228 | 226 227 | oveq12i | ⊢ ( ( 4 · 1 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
229 | 228 4 | eqtri | ⊢ ( ( 4 · 1 ) + ( 0 + 1 ) ) = 5 |
230 | 226 | oveq1i | ⊢ ( ( 4 · 1 ) + 7 ) = ( 4 + 7 ) |
231 | 230 116 | eqtri | ⊢ ( ( 4 · 1 ) + 7 ) = ; 1 1 |
232 | 25 25 28 59 163 88 21 25 25 229 231 | decma2c | ⊢ ( ( 4 · ; 1 1 ) + 7 ) = ; 5 1 |
233 | 25 21 28 59 217 220 152 25 102 225 232 | decmac | ⊢ ( ( ; 1 4 · ; 1 1 ) + ( 0 + 7 ) ) = ; ; 1 6 1 |
234 | 36 | mulid1i | ⊢ ( 6 · 1 ) = 6 |
235 | 86 | addid2i | ⊢ ( 0 + 1 ) = 1 |
236 | 234 235 | oveq12i | ⊢ ( ( 6 · 1 ) + ( 0 + 1 ) ) = ( 6 + 1 ) |
237 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
238 | 236 237 | eqtri | ⊢ ( ( 6 · 1 ) + ( 0 + 1 ) ) = 7 |
239 | eqid | ⊢ 4 = 4 | |
240 | 234 239 | oveq12i | ⊢ ( ( 6 · 1 ) + 4 ) = ( 6 + 4 ) |
241 | 240 44 | eqtri | ⊢ ( ( 6 · 1 ) + 4 ) = ; 1 0 |
242 | 25 25 28 21 163 189 29 28 25 238 241 | decma2c | ⊢ ( ( 6 · ; 1 1 ) + 4 ) = ; 7 0 |
243 | 209 29 28 21 214 216 152 28 59 233 242 | decmac | ⊢ ( ( ; ; 1 4 6 · ; 1 1 ) + ( 0 + 4 ) ) = ; ; ; 1 6 1 0 |
244 | 226 84 | oveq12i | ⊢ ( ( 4 · 1 ) + ( 0 + 0 ) ) = ( 4 + 0 ) |
245 | 244 194 | eqtri | ⊢ ( ( 4 · 1 ) + ( 0 + 0 ) ) = 4 |
246 | 226 | oveq1i | ⊢ ( ( 4 · 1 ) + 1 ) = ( 4 + 1 ) |
247 | 246 4 | eqtri | ⊢ ( ( 4 · 1 ) + 1 ) = 5 |
248 | 102 | dec0h | ⊢ 5 = ; 0 5 |
249 | 248 | eqcomi | ⊢ ; 0 5 = 5 |
250 | 247 249 | eqtr4i | ⊢ ( ( 4 · 1 ) + 1 ) = ; 0 5 |
251 | 25 25 28 25 163 175 21 102 28 245 250 | decma2c | ⊢ ( ( 4 · ; 1 1 ) + 1 ) = ; 4 5 |
252 | 210 21 28 25 213 175 152 102 21 243 251 | decmac | ⊢ ( ( ; ; ; 1 4 6 4 · ; 1 1 ) + 1 ) = ; ; ; ; 1 6 1 0 5 |
253 | 152 211 25 212 25 25 252 164 | decmul1c | ⊢ ( ; ; ; ; 1 4 6 4 1 · ; 1 1 ) = ; ; ; ; ; 1 6 1 0 5 1 |
254 | 208 253 | eqtri | ⊢ ( ; 1 1 ↑ 5 ) = ; ; ; ; ; 1 6 1 0 5 1 |
255 | 254 | eqcomi | ⊢ ; ; ; ; ; 1 6 1 0 5 1 = ( ; 1 1 ↑ 5 ) |
256 | 149 255 | breqtri | ⊢ ( 9 · ( 7 ↑ 5 ) ) < ( ; 1 1 ↑ 5 ) |
257 | 7re | ⊢ 7 ∈ ℝ | |
258 | 5nn | ⊢ 5 ∈ ℕ | |
259 | 258 | nnzi | ⊢ 5 ∈ ℤ |
260 | 7pos | ⊢ 0 < 7 | |
261 | 257 259 260 | 3pm3.2i | ⊢ ( 7 ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < 7 ) |
262 | expgt0 | ⊢ ( ( 7 ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < 7 ) → 0 < ( 7 ↑ 5 ) ) | |
263 | 261 262 | ax-mp | ⊢ 0 < ( 7 ↑ 5 ) |
264 | 9re | ⊢ 9 ∈ ℝ | |
265 | 1nn | ⊢ 1 ∈ ℕ | |
266 | 25 265 | decnncl | ⊢ ; 1 1 ∈ ℕ |
267 | 266 | nnrei | ⊢ ; 1 1 ∈ ℝ |
268 | 267 102 | pm3.2i | ⊢ ( ; 1 1 ∈ ℝ ∧ 5 ∈ ℕ0 ) |
269 | reexpcl | ⊢ ( ( ; 1 1 ∈ ℝ ∧ 5 ∈ ℕ0 ) → ( ; 1 1 ↑ 5 ) ∈ ℝ ) | |
270 | 268 269 | ax-mp | ⊢ ( ; 1 1 ↑ 5 ) ∈ ℝ |
271 | 257 102 | pm3.2i | ⊢ ( 7 ∈ ℝ ∧ 5 ∈ ℕ0 ) |
272 | reexpcl | ⊢ ( ( 7 ∈ ℝ ∧ 5 ∈ ℕ0 ) → ( 7 ↑ 5 ) ∈ ℝ ) | |
273 | 271 272 | ax-mp | ⊢ ( 7 ↑ 5 ) ∈ ℝ |
274 | 264 270 273 | ltmuldivi | ⊢ ( 0 < ( 7 ↑ 5 ) → ( ( 9 · ( 7 ↑ 5 ) ) < ( ; 1 1 ↑ 5 ) ↔ 9 < ( ( ; 1 1 ↑ 5 ) / ( 7 ↑ 5 ) ) ) ) |
275 | 263 274 | ax-mp | ⊢ ( ( 9 · ( 7 ↑ 5 ) ) < ( ; 1 1 ↑ 5 ) ↔ 9 < ( ( ; 1 1 ↑ 5 ) / ( 7 ↑ 5 ) ) ) |
276 | 256 275 | mpbi | ⊢ 9 < ( ( ; 1 1 ↑ 5 ) / ( 7 ↑ 5 ) ) |
277 | 153 | a1i | ⊢ ( ⊤ → ; 1 1 ∈ ℂ ) |
278 | 8 | a1i | ⊢ ( ⊤ → 7 ∈ ℂ ) |
279 | 0red | ⊢ ( ⊤ → 0 ∈ ℝ ) | |
280 | 260 | a1i | ⊢ ( ⊤ → 0 < 7 ) |
281 | 279 280 | ltned | ⊢ ( ⊤ → 0 ≠ 7 ) |
282 | 281 | necomd | ⊢ ( ⊤ → 7 ≠ 0 ) |
283 | 102 | a1i | ⊢ ( ⊤ → 5 ∈ ℕ0 ) |
284 | 277 278 282 283 | expdivd | ⊢ ( ⊤ → ( ( ; 1 1 / 7 ) ↑ 5 ) = ( ( ; 1 1 ↑ 5 ) / ( 7 ↑ 5 ) ) ) |
285 | 284 | eqcomd | ⊢ ( ⊤ → ( ( ; 1 1 ↑ 5 ) / ( 7 ↑ 5 ) ) = ( ( ; 1 1 / 7 ) ↑ 5 ) ) |
286 | 285 | mptru | ⊢ ( ( ; 1 1 ↑ 5 ) / ( 7 ↑ 5 ) ) = ( ( ; 1 1 / 7 ) ↑ 5 ) |
287 | 276 286 | breqtri | ⊢ 9 < ( ( ; 1 1 / 7 ) ↑ 5 ) |