Metamath Proof Explorer


Theorem 3lexlogpow5ineq3

Description: Combined inequality chain for a specific power of the binary logarithm, proposed by Mario Carneiro. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses 3lexlogpow5ineq3.1 ( 𝜑𝑋 ∈ ℝ )
3lexlogpow5ineq3.2 ( 𝜑 → 3 ≤ 𝑋 )
Assertion 3lexlogpow5ineq3 ( 𝜑 → 7 < ( ( 2 logb 𝑋 ) ↑ 5 ) )

Proof

Step Hyp Ref Expression
1 3lexlogpow5ineq3.1 ( 𝜑𝑋 ∈ ℝ )
2 3lexlogpow5ineq3.2 ( 𝜑 → 3 ≤ 𝑋 )
3 7re 7 ∈ ℝ
4 3 a1i ( 𝜑 → 7 ∈ ℝ )
5 9re 9 ∈ ℝ
6 5 a1i ( 𝜑 → 9 ∈ ℝ )
7 2re 2 ∈ ℝ
8 7 a1i ( 𝜑 → 2 ∈ ℝ )
9 2pos 0 < 2
10 9 a1i ( 𝜑 → 0 < 2 )
11 0red ( 𝜑 → 0 ∈ ℝ )
12 3re 3 ∈ ℝ
13 12 a1i ( 𝜑 → 3 ∈ ℝ )
14 3pos 0 < 3
15 14 a1i ( 𝜑 → 0 < 3 )
16 11 13 1 15 2 ltletrd ( 𝜑 → 0 < 𝑋 )
17 1red ( 𝜑 → 1 ∈ ℝ )
18 1lt2 1 < 2
19 18 a1i ( 𝜑 → 1 < 2 )
20 17 19 ltned ( 𝜑 → 1 ≠ 2 )
21 20 necomd ( 𝜑 → 2 ≠ 1 )
22 8 10 1 16 21 relogbcld ( 𝜑 → ( 2 logb 𝑋 ) ∈ ℝ )
23 5nn0 5 ∈ ℕ0
24 23 a1i ( 𝜑 → 5 ∈ ℕ0 )
25 22 24 reexpcld ( 𝜑 → ( ( 2 logb 𝑋 ) ↑ 5 ) ∈ ℝ )
26 7lt9 7 < 9
27 26 a1i ( 𝜑 → 7 < 9 )
28 1 2 3lexlogpow5ineq4 ( 𝜑 → 9 < ( ( 2 logb 𝑋 ) ↑ 5 ) )
29 4 6 25 27 28 lttrd ( 𝜑 → 7 < ( ( 2 logb 𝑋 ) ↑ 5 ) )