Description: Combined inequality chain for a specific power of the binary logarithm, proposed by Mario Carneiro. (Contributed by metakunt, 22-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3lexlogpow5ineq3.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
3lexlogpow5ineq3.2 | ⊢ ( 𝜑 → 3 ≤ 𝑋 ) | ||
Assertion | 3lexlogpow5ineq3 | ⊢ ( 𝜑 → 7 < ( ( 2 logb 𝑋 ) ↑ 5 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3lexlogpow5ineq3.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
2 | 3lexlogpow5ineq3.2 | ⊢ ( 𝜑 → 3 ≤ 𝑋 ) | |
3 | 7re | ⊢ 7 ∈ ℝ | |
4 | 3 | a1i | ⊢ ( 𝜑 → 7 ∈ ℝ ) |
5 | 9re | ⊢ 9 ∈ ℝ | |
6 | 5 | a1i | ⊢ ( 𝜑 → 9 ∈ ℝ ) |
7 | 2re | ⊢ 2 ∈ ℝ | |
8 | 7 | a1i | ⊢ ( 𝜑 → 2 ∈ ℝ ) |
9 | 2pos | ⊢ 0 < 2 | |
10 | 9 | a1i | ⊢ ( 𝜑 → 0 < 2 ) |
11 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
12 | 3re | ⊢ 3 ∈ ℝ | |
13 | 12 | a1i | ⊢ ( 𝜑 → 3 ∈ ℝ ) |
14 | 3pos | ⊢ 0 < 3 | |
15 | 14 | a1i | ⊢ ( 𝜑 → 0 < 3 ) |
16 | 11 13 1 15 2 | ltletrd | ⊢ ( 𝜑 → 0 < 𝑋 ) |
17 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
18 | 1lt2 | ⊢ 1 < 2 | |
19 | 18 | a1i | ⊢ ( 𝜑 → 1 < 2 ) |
20 | 17 19 | ltned | ⊢ ( 𝜑 → 1 ≠ 2 ) |
21 | 20 | necomd | ⊢ ( 𝜑 → 2 ≠ 1 ) |
22 | 8 10 1 16 21 | relogbcld | ⊢ ( 𝜑 → ( 2 logb 𝑋 ) ∈ ℝ ) |
23 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
24 | 23 | a1i | ⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
25 | 22 24 | reexpcld | ⊢ ( 𝜑 → ( ( 2 logb 𝑋 ) ↑ 5 ) ∈ ℝ ) |
26 | 7lt9 | ⊢ 7 < 9 | |
27 | 26 | a1i | ⊢ ( 𝜑 → 7 < 9 ) |
28 | 1 2 | 3lexlogpow5ineq4 | ⊢ ( 𝜑 → 9 < ( ( 2 logb 𝑋 ) ↑ 5 ) ) |
29 | 4 6 25 27 28 | lttrd | ⊢ ( 𝜑 → 7 < ( ( 2 logb 𝑋 ) ↑ 5 ) ) |