Metamath Proof Explorer


Theorem dvrelogpow2b

Description: Derivative of the power of the binary logarithm. (Contributed by metakunt, 12-Aug-2024)

Ref Expression
Hypotheses dvrelogpow2b.1 φ A
dvrelogpow2b.2 φ B
dvrelogpow2b.3 φ 0 < A
dvrelogpow2b.4 φ A B
dvrelogpow2b.5 F = x A B log 2 x N
dvrelogpow2b.6 G = x A B C log x N 1 x
dvrelogpow2b.7 C = N log 2 N
dvrelogpow2b.8 φ N
Assertion dvrelogpow2b φ D F = G

Proof

Step Hyp Ref Expression
1 dvrelogpow2b.1 φ A
2 dvrelogpow2b.2 φ B
3 dvrelogpow2b.3 φ 0 < A
4 dvrelogpow2b.4 φ A B
5 dvrelogpow2b.5 F = x A B log 2 x N
6 dvrelogpow2b.6 G = x A B C log x N 1 x
7 dvrelogpow2b.7 C = N log 2 N
8 dvrelogpow2b.8 φ N
9 5 a1i φ F = x A B log 2 x N
10 9 oveq2d φ D F = dx A B log 2 x N d x
11 reelprrecn
12 11 a1i φ
13 cnelprrecn
14 13 a1i φ
15 elioore x A B x
16 15 adantl φ x A B x
17 16 recnd φ x A B x
18 1 adantr φ x A B A
19 2 adantr φ x A B B
20 3 adantr φ x A B 0 < A
21 4 adantr φ x A B A B
22 simpr φ x A B x A B
23 18 19 20 21 22 0nonelalab φ x A B 0 x
24 23 necomd φ x A B x 0
25 17 24 logcld φ x A B log x
26 2cnd φ x A B 2
27 0ne2 0 2
28 27 a1i φ x A B 0 2
29 28 necomd φ x A B 2 0
30 26 29 logcld φ x A B log 2
31 0red φ x A B 0
32 1lt2 1 < 2
33 32 a1i φ x A B 1 < 2
34 2rp 2 +
35 loggt0b 2 + 0 < log 2 1 < 2
36 34 35 ax-mp 0 < log 2 1 < 2
37 33 36 sylibr φ x A B 0 < log 2
38 31 37 ltned φ x A B 0 log 2
39 38 necomd φ x A B log 2 0
40 25 30 39 divcld φ x A B log x log 2
41 1red φ x A B 1
42 41 33 ltned φ x A B 1 2
43 42 necomd φ x A B 2 1
44 29 43 nelprd φ x A B ¬ 2 0 1
45 26 44 eldifd φ x A B 2 0 1
46 necom 0 x x 0
47 46 imbi2i φ x A B 0 x φ x A B x 0
48 23 47 mpbi φ x A B x 0
49 48 neneqd φ x A B ¬ x = 0
50 velsn x 0 x = 0
51 49 50 sylnibr φ x A B ¬ x 0
52 17 51 eldifd φ x A B x 0
53 logbval 2 0 1 x 0 log 2 x = log x log 2
54 45 52 53 syl2anc φ x A B log 2 x = log x log 2
55 54 eleq1d φ x A B log 2 x log x log 2
56 40 55 mpbird φ x A B log 2 x
57 34 a1i φ x A B 2 +
58 57 relogcld φ x A B log 2
59 16 58 remulcld φ x A B x log 2
60 57 rpne0d φ x A B 2 0
61 26 60 logcld φ x A B log 2
62 17 61 24 39 mulne0d φ x A B x log 2 0
63 41 59 62 redivcld φ x A B 1 x log 2
64 simpr φ y y
65 8 nnnn0d φ N 0
66 65 adantr φ y N 0
67 64 66 expcld φ y y N
68 8 nncnd φ N
69 68 adantr φ y N
70 nnm1nn0 N N 1 0
71 8 70 syl φ N 1 0
72 71 adantr φ y N 1 0
73 64 72 expcld φ y y N 1
74 69 73 mulcld φ y N y N 1
75 1 rexrd φ A *
76 2 rexrd φ B *
77 0red φ 0
78 77 1 3 ltled φ 0 A
79 eqid x A B log 2 x = x A B log 2 x
80 eqid x A B 1 x log 2 = x A B 1 x log 2
81 75 76 78 4 79 80 dvrelog2b φ dx A B log 2 x d x = x A B 1 x log 2
82 dvexp N dy y N d y = y N y N 1
83 8 82 syl φ dy y N d y = y N y N 1
84 oveq1 y = log 2 x y N = log 2 x N
85 oveq1 y = log 2 x y N 1 = log 2 x N 1
86 85 oveq2d y = log 2 x N y N 1 = N log 2 x N 1
87 12 14 56 63 67 74 81 83 84 86 dvmptco φ dx A B log 2 x N d x = x A B N log 2 x N 1 1 x log 2
88 6 a1i φ G = x A B C log x N 1 x
89 7 a1i φ x A B C = N log 2 N
90 89 oveq1d φ x A B C log x N 1 x = N log 2 N log x N 1 x
91 68 adantr φ x A B N
92 65 nn0zd φ N
93 92 adantr φ x A B N
94 30 39 93 expclzd φ x A B log 2 N
95 71 adantr φ x A B N 1 0
96 25 95 expcld φ x A B log x N 1
97 30 39 93 expne0d φ x A B log 2 N 0
98 91 94 96 17 97 24 divmuldivd φ x A B N log 2 N log x N 1 x = N log x N 1 log 2 N x
99 94 17 mulcomd φ x A B log 2 N x = x log 2 N
100 1cnd φ 1
101 100 68 pncan3d φ 1 + N - 1 = N
102 101 eqcomd φ N = 1 + N - 1
103 102 adantr φ x A B N = 1 + N - 1
104 103 oveq2d φ x A B log 2 N = log 2 1 + N - 1
105 1nn0 1 0
106 105 a1i φ x A B 1 0
107 30 95 106 expaddd φ x A B log 2 1 + N - 1 = log 2 1 log 2 N 1
108 104 107 eqtrd φ x A B log 2 N = log 2 1 log 2 N 1
109 30 exp1d φ x A B log 2 1 = log 2
110 109 oveq1d φ x A B log 2 1 log 2 N 1 = log 2 log 2 N 1
111 108 110 eqtrd φ x A B log 2 N = log 2 log 2 N 1
112 111 oveq2d φ x A B x log 2 N = x log 2 log 2 N 1
113 99 112 eqtrd φ x A B log 2 N x = x log 2 log 2 N 1
114 30 95 expcld φ x A B log 2 N 1
115 17 30 114 mulassd φ x A B x log 2 log 2 N 1 = x log 2 log 2 N 1
116 115 eqcomd φ x A B x log 2 log 2 N 1 = x log 2 log 2 N 1
117 113 116 eqtrd φ x A B log 2 N x = x log 2 log 2 N 1
118 17 30 mulcld φ x A B x log 2
119 118 114 mulcomd φ x A B x log 2 log 2 N 1 = log 2 N 1 x log 2
120 117 119 eqtrd φ x A B log 2 N x = log 2 N 1 x log 2
121 120 oveq2d φ x A B N log x N 1 log 2 N x = N log x N 1 log 2 N 1 x log 2
122 98 121 eqtrd φ x A B N log 2 N log x N 1 x = N log x N 1 log 2 N 1 x log 2
123 90 122 eqtrd φ x A B C log x N 1 x = N log x N 1 log 2 N 1 x log 2
124 91 96 mulcld φ x A B N log x N 1
125 1zzd φ x A B 1
126 93 125 zsubcld φ x A B N 1
127 30 39 126 expne0d φ x A B log 2 N 1 0
128 124 114 118 127 62 divdiv1d φ x A B N log x N 1 log 2 N 1 x log 2 = N log x N 1 log 2 N 1 x log 2
129 128 eqcomd φ x A B N log x N 1 log 2 N 1 x log 2 = N log x N 1 log 2 N 1 x log 2
130 123 129 eqtrd φ x A B C log x N 1 x = N log x N 1 log 2 N 1 x log 2
131 91 96 114 127 divassd φ x A B N log x N 1 log 2 N 1 = N log x N 1 log 2 N 1
132 131 oveq1d φ x A B N log x N 1 log 2 N 1 x log 2 = N log x N 1 log 2 N 1 x log 2
133 130 132 eqtrd φ x A B C log x N 1 x = N log x N 1 log 2 N 1 x log 2
134 25 30 39 95 expdivd φ x A B log x log 2 N 1 = log x N 1 log 2 N 1
135 134 eqcomd φ x A B log x N 1 log 2 N 1 = log x log 2 N 1
136 135 oveq2d φ x A B N log x N 1 log 2 N 1 = N log x log 2 N 1
137 136 oveq1d φ x A B N log x N 1 log 2 N 1 x log 2 = N log x log 2 N 1 x log 2
138 133 137 eqtrd φ x A B C log x N 1 x = N log x log 2 N 1 x log 2
139 54 oveq1d φ x A B log 2 x N 1 = log x log 2 N 1
140 139 oveq2d φ x A B N log 2 x N 1 = N log x log 2 N 1
141 140 oveq1d φ x A B N log 2 x N 1 x log 2 = N log x log 2 N 1 x log 2
142 141 eqcomd φ x A B N log x log 2 N 1 x log 2 = N log 2 x N 1 x log 2
143 138 142 eqtrd φ x A B C log x N 1 x = N log 2 x N 1 x log 2
144 56 95 expcld φ x A B log 2 x N 1
145 91 144 mulcld φ x A B N log 2 x N 1
146 145 118 62 divrecd φ x A B N log 2 x N 1 x log 2 = N log 2 x N 1 1 x log 2
147 143 146 eqtrd φ x A B C log x N 1 x = N log 2 x N 1 1 x log 2
148 147 mpteq2dva φ x A B C log x N 1 x = x A B N log 2 x N 1 1 x log 2
149 88 148 eqtrd φ G = x A B N log 2 x N 1 1 x log 2
150 149 eqcomd φ x A B N log 2 x N 1 1 x log 2 = G
151 87 150 eqtrd φ dx A B log 2 x N d x = G
152 10 151 eqtrd φ D F = G