Step |
Hyp |
Ref |
Expression |
1 |
|
dvrelogpow2b.1 |
|
2 |
|
dvrelogpow2b.2 |
|
3 |
|
dvrelogpow2b.3 |
|
4 |
|
dvrelogpow2b.4 |
|
5 |
|
dvrelogpow2b.5 |
|
6 |
|
dvrelogpow2b.6 |
|
7 |
|
dvrelogpow2b.7 |
|
8 |
|
dvrelogpow2b.8 |
|
9 |
5
|
a1i |
|
10 |
9
|
oveq2d |
|
11 |
|
reelprrecn |
|
12 |
11
|
a1i |
|
13 |
|
cnelprrecn |
|
14 |
13
|
a1i |
|
15 |
|
elioore |
|
16 |
15
|
adantl |
|
17 |
16
|
recnd |
|
18 |
1
|
adantr |
|
19 |
2
|
adantr |
|
20 |
3
|
adantr |
|
21 |
4
|
adantr |
|
22 |
|
simpr |
|
23 |
18 19 20 21 22
|
0nonelalab |
|
24 |
23
|
necomd |
|
25 |
17 24
|
logcld |
|
26 |
|
2cnd |
|
27 |
|
0ne2 |
|
28 |
27
|
a1i |
|
29 |
28
|
necomd |
|
30 |
26 29
|
logcld |
|
31 |
|
0red |
|
32 |
|
1lt2 |
|
33 |
32
|
a1i |
|
34 |
|
2rp |
|
35 |
|
loggt0b |
|
36 |
34 35
|
ax-mp |
|
37 |
33 36
|
sylibr |
|
38 |
31 37
|
ltned |
|
39 |
38
|
necomd |
|
40 |
25 30 39
|
divcld |
|
41 |
|
1red |
|
42 |
41 33
|
ltned |
|
43 |
42
|
necomd |
|
44 |
29 43
|
nelprd |
|
45 |
26 44
|
eldifd |
|
46 |
|
necom |
|
47 |
46
|
imbi2i |
|
48 |
23 47
|
mpbi |
|
49 |
48
|
neneqd |
|
50 |
|
velsn |
|
51 |
49 50
|
sylnibr |
|
52 |
17 51
|
eldifd |
|
53 |
|
logbval |
|
54 |
45 52 53
|
syl2anc |
|
55 |
54
|
eleq1d |
|
56 |
40 55
|
mpbird |
|
57 |
34
|
a1i |
|
58 |
57
|
relogcld |
|
59 |
16 58
|
remulcld |
|
60 |
57
|
rpne0d |
|
61 |
26 60
|
logcld |
|
62 |
17 61 24 39
|
mulne0d |
|
63 |
41 59 62
|
redivcld |
|
64 |
|
simpr |
|
65 |
8
|
nnnn0d |
|
66 |
65
|
adantr |
|
67 |
64 66
|
expcld |
|
68 |
8
|
nncnd |
|
69 |
68
|
adantr |
|
70 |
|
nnm1nn0 |
|
71 |
8 70
|
syl |
|
72 |
71
|
adantr |
|
73 |
64 72
|
expcld |
|
74 |
69 73
|
mulcld |
|
75 |
1
|
rexrd |
|
76 |
2
|
rexrd |
|
77 |
|
0red |
|
78 |
77 1 3
|
ltled |
|
79 |
|
eqid |
|
80 |
|
eqid |
|
81 |
75 76 78 4 79 80
|
dvrelog2b |
|
82 |
|
dvexp |
|
83 |
8 82
|
syl |
|
84 |
|
oveq1 |
|
85 |
|
oveq1 |
|
86 |
85
|
oveq2d |
|
87 |
12 14 56 63 67 74 81 83 84 86
|
dvmptco |
|
88 |
6
|
a1i |
|
89 |
7
|
a1i |
|
90 |
89
|
oveq1d |
|
91 |
68
|
adantr |
|
92 |
65
|
nn0zd |
|
93 |
92
|
adantr |
|
94 |
30 39 93
|
expclzd |
|
95 |
71
|
adantr |
|
96 |
25 95
|
expcld |
|
97 |
30 39 93
|
expne0d |
|
98 |
91 94 96 17 97 24
|
divmuldivd |
|
99 |
94 17
|
mulcomd |
|
100 |
|
1cnd |
|
101 |
100 68
|
pncan3d |
|
102 |
101
|
eqcomd |
|
103 |
102
|
adantr |
|
104 |
103
|
oveq2d |
|
105 |
|
1nn0 |
|
106 |
105
|
a1i |
|
107 |
30 95 106
|
expaddd |
|
108 |
104 107
|
eqtrd |
|
109 |
30
|
exp1d |
|
110 |
109
|
oveq1d |
|
111 |
108 110
|
eqtrd |
|
112 |
111
|
oveq2d |
|
113 |
99 112
|
eqtrd |
|
114 |
30 95
|
expcld |
|
115 |
17 30 114
|
mulassd |
|
116 |
115
|
eqcomd |
|
117 |
113 116
|
eqtrd |
|
118 |
17 30
|
mulcld |
|
119 |
118 114
|
mulcomd |
|
120 |
117 119
|
eqtrd |
|
121 |
120
|
oveq2d |
|
122 |
98 121
|
eqtrd |
|
123 |
90 122
|
eqtrd |
|
124 |
91 96
|
mulcld |
|
125 |
|
1zzd |
|
126 |
93 125
|
zsubcld |
|
127 |
30 39 126
|
expne0d |
|
128 |
124 114 118 127 62
|
divdiv1d |
|
129 |
128
|
eqcomd |
|
130 |
123 129
|
eqtrd |
|
131 |
91 96 114 127
|
divassd |
|
132 |
131
|
oveq1d |
|
133 |
130 132
|
eqtrd |
|
134 |
25 30 39 95
|
expdivd |
|
135 |
134
|
eqcomd |
|
136 |
135
|
oveq2d |
|
137 |
136
|
oveq1d |
|
138 |
133 137
|
eqtrd |
|
139 |
54
|
oveq1d |
|
140 |
139
|
oveq2d |
|
141 |
140
|
oveq1d |
|
142 |
141
|
eqcomd |
|
143 |
138 142
|
eqtrd |
|
144 |
56 95
|
expcld |
|
145 |
91 144
|
mulcld |
|
146 |
145 118 62
|
divrecd |
|
147 |
143 146
|
eqtrd |
|
148 |
147
|
mpteq2dva |
|
149 |
88 148
|
eqtrd |
|
150 |
149
|
eqcomd |
|
151 |
87 150
|
eqtrd |
|
152 |
10 151
|
eqtrd |
|