Step |
Hyp |
Ref |
Expression |
1 |
|
dvrelogpow2b.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
dvrelogpow2b.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
dvrelogpow2b.3 |
⊢ ( 𝜑 → 0 < 𝐴 ) |
4 |
|
dvrelogpow2b.4 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
|
dvrelogpow2b.5 |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 logb 𝑥 ) ↑ 𝑁 ) ) |
6 |
|
dvrelogpow2b.6 |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐶 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / 𝑥 ) ) ) |
7 |
|
dvrelogpow2b.7 |
⊢ 𝐶 = ( 𝑁 / ( ( log ‘ 2 ) ↑ 𝑁 ) ) |
8 |
|
dvrelogpow2b.8 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
5
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 logb 𝑥 ) ↑ 𝑁 ) ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 logb 𝑥 ) ↑ 𝑁 ) ) ) ) |
11 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
12 |
11
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
13 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
14 |
13
|
a1i |
⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
15 |
|
elioore |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℂ ) |
18 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ ) |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < 𝐴 ) |
21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ≤ 𝐵 ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
23 |
18 19 20 21 22
|
0nonelalab |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≠ 𝑥 ) |
24 |
23
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ≠ 0 ) |
25 |
17 24
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
26 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ℂ ) |
27 |
|
0ne2 |
⊢ 0 ≠ 2 |
28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≠ 2 ) |
29 |
28
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ≠ 0 ) |
30 |
26 29
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( log ‘ 2 ) ∈ ℂ ) |
31 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ∈ ℝ ) |
32 |
|
1lt2 |
⊢ 1 < 2 |
33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 < 2 ) |
34 |
|
2rp |
⊢ 2 ∈ ℝ+ |
35 |
|
loggt0b |
⊢ ( 2 ∈ ℝ+ → ( 0 < ( log ‘ 2 ) ↔ 1 < 2 ) ) |
36 |
34 35
|
ax-mp |
⊢ ( 0 < ( log ‘ 2 ) ↔ 1 < 2 ) |
37 |
33 36
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < ( log ‘ 2 ) ) |
38 |
31 37
|
ltned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≠ ( log ‘ 2 ) ) |
39 |
38
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( log ‘ 2 ) ≠ 0 ) |
40 |
25 30 39
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ∈ ℂ ) |
41 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 ∈ ℝ ) |
42 |
41 33
|
ltned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 ≠ 2 ) |
43 |
42
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ≠ 1 ) |
44 |
29 43
|
nelprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 2 ∈ { 0 , 1 } ) |
45 |
26 44
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
46 |
|
necom |
⊢ ( 0 ≠ 𝑥 ↔ 𝑥 ≠ 0 ) |
47 |
46
|
imbi2i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≠ 𝑥 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ≠ 0 ) ) |
48 |
23 47
|
mpbi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ≠ 0 ) |
49 |
48
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 = 0 ) |
50 |
|
velsn |
⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
51 |
49 50
|
sylnibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 ∈ { 0 } ) |
52 |
17 51
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) |
53 |
|
logbval |
⊢ ( ( 2 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 2 logb 𝑥 ) = ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ) |
54 |
45 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 logb 𝑥 ) = ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ) |
55 |
54
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 2 logb 𝑥 ) ∈ ℂ ↔ ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ∈ ℂ ) ) |
56 |
40 55
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 logb 𝑥 ) ∈ ℂ ) |
57 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ℝ+ ) |
58 |
57
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( log ‘ 2 ) ∈ ℝ ) |
59 |
16 58
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 · ( log ‘ 2 ) ) ∈ ℝ ) |
60 |
57
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ≠ 0 ) |
61 |
26 60
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( log ‘ 2 ) ∈ ℂ ) |
62 |
17 61 24 39
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 · ( log ‘ 2 ) ) ≠ 0 ) |
63 |
41 59 62
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ∈ ℝ ) |
64 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
65 |
8
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
67 |
64 66
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ↑ 𝑁 ) ∈ ℂ ) |
68 |
8
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑁 ∈ ℂ ) |
70 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
71 |
8 70
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
73 |
64 72
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
74 |
69 73
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ∈ ℂ ) |
75 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
76 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
77 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
78 |
77 1 3
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
79 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 logb 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 logb 𝑥 ) ) |
80 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) |
81 |
75 76 78 4 79 80
|
dvrelog2b |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 logb 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) ) |
82 |
|
dvexp |
⊢ ( 𝑁 ∈ ℕ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑁 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ) ) |
83 |
8 82
|
syl |
⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑁 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ) ) |
84 |
|
oveq1 |
⊢ ( 𝑦 = ( 2 logb 𝑥 ) → ( 𝑦 ↑ 𝑁 ) = ( ( 2 logb 𝑥 ) ↑ 𝑁 ) ) |
85 |
|
oveq1 |
⊢ ( 𝑦 = ( 2 logb 𝑥 ) → ( 𝑦 ↑ ( 𝑁 − 1 ) ) = ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) |
86 |
85
|
oveq2d |
⊢ ( 𝑦 = ( 2 logb 𝑥 ) → ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) = ( 𝑁 · ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) |
87 |
12 14 56 63 67 74 81 83 84 86
|
dvmptco |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 logb 𝑥 ) ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 · ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) ) ) |
88 |
6
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐶 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / 𝑥 ) ) ) ) |
89 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 = ( 𝑁 / ( ( log ‘ 2 ) ↑ 𝑁 ) ) ) |
90 |
89
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / 𝑥 ) ) = ( ( 𝑁 / ( ( log ‘ 2 ) ↑ 𝑁 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / 𝑥 ) ) ) |
91 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑁 ∈ ℂ ) |
92 |
65
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑁 ∈ ℤ ) |
94 |
30 39 93
|
expclzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 2 ) ↑ 𝑁 ) ∈ ℂ ) |
95 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
96 |
25 95
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
97 |
30 39 93
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 2 ) ↑ 𝑁 ) ≠ 0 ) |
98 |
91 94 96 17 97 24
|
divmuldivd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑁 / ( ( log ‘ 2 ) ↑ 𝑁 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / 𝑥 ) ) = ( ( 𝑁 · ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( ( ( log ‘ 2 ) ↑ 𝑁 ) · 𝑥 ) ) ) |
99 |
94 17
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( log ‘ 2 ) ↑ 𝑁 ) · 𝑥 ) = ( 𝑥 · ( ( log ‘ 2 ) ↑ 𝑁 ) ) ) |
100 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
101 |
100 68
|
pncan3d |
⊢ ( 𝜑 → ( 1 + ( 𝑁 − 1 ) ) = 𝑁 ) |
102 |
101
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( 1 + ( 𝑁 − 1 ) ) ) |
103 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑁 = ( 1 + ( 𝑁 − 1 ) ) ) |
104 |
103
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 2 ) ↑ 𝑁 ) = ( ( log ‘ 2 ) ↑ ( 1 + ( 𝑁 − 1 ) ) ) ) |
105 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
106 |
105
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 ∈ ℕ0 ) |
107 |
30 95 106
|
expaddd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 2 ) ↑ ( 1 + ( 𝑁 − 1 ) ) ) = ( ( ( log ‘ 2 ) ↑ 1 ) · ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) |
108 |
104 107
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 2 ) ↑ 𝑁 ) = ( ( ( log ‘ 2 ) ↑ 1 ) · ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) |
109 |
30
|
exp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 2 ) ↑ 1 ) = ( log ‘ 2 ) ) |
110 |
109
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( log ‘ 2 ) ↑ 1 ) · ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) = ( ( log ‘ 2 ) · ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) |
111 |
108 110
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 2 ) ↑ 𝑁 ) = ( ( log ‘ 2 ) · ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) |
112 |
111
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 · ( ( log ‘ 2 ) ↑ 𝑁 ) ) = ( 𝑥 · ( ( log ‘ 2 ) · ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) ) |
113 |
99 112
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( log ‘ 2 ) ↑ 𝑁 ) · 𝑥 ) = ( 𝑥 · ( ( log ‘ 2 ) · ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) ) |
114 |
30 95
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
115 |
17 30 114
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑥 · ( log ‘ 2 ) ) · ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) = ( 𝑥 · ( ( log ‘ 2 ) · ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) ) |
116 |
115
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 · ( ( log ‘ 2 ) · ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) = ( ( 𝑥 · ( log ‘ 2 ) ) · ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) |
117 |
113 116
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( log ‘ 2 ) ↑ 𝑁 ) · 𝑥 ) = ( ( 𝑥 · ( log ‘ 2 ) ) · ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) |
118 |
17 30
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 · ( log ‘ 2 ) ) ∈ ℂ ) |
119 |
118 114
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑥 · ( log ‘ 2 ) ) · ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) = ( ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) · ( 𝑥 · ( log ‘ 2 ) ) ) ) |
120 |
117 119
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( log ‘ 2 ) ↑ 𝑁 ) · 𝑥 ) = ( ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) · ( 𝑥 · ( log ‘ 2 ) ) ) ) |
121 |
120
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑁 · ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( ( ( log ‘ 2 ) ↑ 𝑁 ) · 𝑥 ) ) = ( ( 𝑁 · ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) · ( 𝑥 · ( log ‘ 2 ) ) ) ) ) |
122 |
98 121
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑁 / ( ( log ‘ 2 ) ↑ 𝑁 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / 𝑥 ) ) = ( ( 𝑁 · ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) · ( 𝑥 · ( log ‘ 2 ) ) ) ) ) |
123 |
90 122
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / 𝑥 ) ) = ( ( 𝑁 · ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) · ( 𝑥 · ( log ‘ 2 ) ) ) ) ) |
124 |
91 96
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑁 · ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ∈ ℂ ) |
125 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 ∈ ℤ ) |
126 |
93 125
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑁 − 1 ) ∈ ℤ ) |
127 |
30 39 126
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ≠ 0 ) |
128 |
124 114 118 127 62
|
divdiv1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝑁 · ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) = ( ( 𝑁 · ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) · ( 𝑥 · ( log ‘ 2 ) ) ) ) ) |
129 |
128
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑁 · ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) · ( 𝑥 · ( log ‘ 2 ) ) ) ) = ( ( ( 𝑁 · ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) ) |
130 |
123 129
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / 𝑥 ) ) = ( ( ( 𝑁 · ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) ) |
131 |
91 96 114 127
|
divassd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑁 · ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) = ( 𝑁 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) ) |
132 |
131
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝑁 · ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) = ( ( 𝑁 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) ) |
133 |
130 132
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / 𝑥 ) ) = ( ( 𝑁 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) ) |
134 |
25 30 39 95
|
expdivd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ↑ ( 𝑁 − 1 ) ) = ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) |
135 |
134
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) = ( ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ↑ ( 𝑁 − 1 ) ) ) |
136 |
135
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑁 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) = ( 𝑁 · ( ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ↑ ( 𝑁 − 1 ) ) ) ) |
137 |
136
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑁 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / ( ( log ‘ 2 ) ↑ ( 𝑁 − 1 ) ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) = ( ( 𝑁 · ( ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ↑ ( 𝑁 − 1 ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) ) |
138 |
133 137
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / 𝑥 ) ) = ( ( 𝑁 · ( ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ↑ ( 𝑁 − 1 ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) ) |
139 |
54
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) = ( ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ↑ ( 𝑁 − 1 ) ) ) |
140 |
139
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑁 · ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) = ( 𝑁 · ( ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ↑ ( 𝑁 − 1 ) ) ) ) |
141 |
140
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑁 · ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) = ( ( 𝑁 · ( ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ↑ ( 𝑁 − 1 ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) ) |
142 |
141
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑁 · ( ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ↑ ( 𝑁 − 1 ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) = ( ( 𝑁 · ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) ) |
143 |
138 142
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / 𝑥 ) ) = ( ( 𝑁 · ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) ) |
144 |
56 95
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
145 |
91 144
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑁 · ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ∈ ℂ ) |
146 |
145 118 62
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑁 · ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) / ( 𝑥 · ( log ‘ 2 ) ) ) = ( ( 𝑁 · ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) ) |
147 |
143 146
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / 𝑥 ) ) = ( ( 𝑁 · ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) ) |
148 |
147
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐶 · ( ( ( log ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 · ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) ) ) |
149 |
88 148
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 · ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) ) ) |
150 |
149
|
eqcomd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 · ( ( 2 logb 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) ) = 𝐺 ) |
151 |
87 150
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 logb 𝑥 ) ↑ 𝑁 ) ) ) = 𝐺 ) |
152 |
10 151
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = 𝐺 ) |