Step |
Hyp |
Ref |
Expression |
1 |
|
dvrelog2b.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
dvrelog2b.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
dvrelog2b.3 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
4 |
|
dvrelog2b.4 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
|
dvrelog2b.5 |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 logb 𝑥 ) ) |
6 |
|
dvrelog2b.6 |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) |
7 |
5
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 logb 𝑥 ) ) ) |
8 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ℂ ) |
9 |
|
2ne0 |
⊢ 2 ≠ 0 |
10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ≠ 0 ) |
11 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 ∈ ℝ ) |
12 |
|
1lt2 |
⊢ 1 < 2 |
13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 < 2 ) |
14 |
11 13
|
ltned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 ≠ 2 ) |
15 |
14
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ≠ 1 ) |
16 |
10 15
|
nelprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 2 ∈ { 0 , 1 } ) |
17 |
8 16
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
18 |
|
elioore |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ ) |
19 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
20 |
18 19
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℂ ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℂ ) |
22 |
|
elsni |
⊢ ( 𝑥 ∈ { 0 } → 𝑥 = 0 ) |
23 |
|
0xr |
⊢ 0 ∈ ℝ* |
24 |
23
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
25 |
|
xrlenlt |
⊢ ( ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 0 ≤ 𝐴 ↔ ¬ 𝐴 < 0 ) ) |
26 |
24 1 25
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ 𝐴 ↔ ¬ 𝐴 < 0 ) ) |
27 |
3 26
|
mpbid |
⊢ ( 𝜑 → ¬ 𝐴 < 0 ) |
28 |
27
|
orcd |
⊢ ( 𝜑 → ( ¬ 𝐴 < 0 ∨ ¬ 0 < 𝐵 ) ) |
29 |
|
ianor |
⊢ ( ¬ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ↔ ( ¬ 𝐴 < 0 ∨ ¬ 0 < 𝐵 ) ) |
30 |
28 29
|
sylibr |
⊢ ( 𝜑 → ¬ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) |
31 |
|
elioo5 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 0 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) ) |
32 |
1 2 24 31
|
syl3anc |
⊢ ( 𝜑 → ( 0 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) ) |
33 |
32
|
notbid |
⊢ ( 𝜑 → ( ¬ 0 ∈ ( 𝐴 (,) 𝐵 ) ↔ ¬ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) ) |
34 |
30 33
|
mpbird |
⊢ ( 𝜑 → ¬ 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
35 |
34
|
a1d |
⊢ ( 𝜑 → ( 0 ∈ ( 𝐴 (,) 𝐵 ) → ¬ 0 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
36 |
35
|
imp |
⊢ ( ( 𝜑 ∧ 0 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
37 |
36
|
pm2.01da |
⊢ ( 𝜑 → ¬ 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ¬ 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
39 |
|
eleq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ 0 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ 0 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
41 |
38 40
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
42 |
22 41
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 0 } ) → ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
43 |
42
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ { 0 } → ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
44 |
43
|
con2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ¬ 𝑥 ∈ { 0 } ) ) |
45 |
44
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 ∈ { 0 } ) |
46 |
21 45
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) |
47 |
|
logbval |
⊢ ( ( 2 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 2 logb 𝑥 ) = ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ) |
48 |
17 46 47
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 logb 𝑥 ) = ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ) |
49 |
48
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 logb 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ) ) |
50 |
7 49
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ) ) |
51 |
50
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ) ) ) |
52 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
53 |
52
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
54 |
41
|
ex |
⊢ ( 𝜑 → ( 𝑥 = 0 → ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
55 |
54
|
con2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ¬ 𝑥 = 0 ) ) |
56 |
|
biidd |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝑥 = 0 ↔ 𝑥 = 0 ) ) |
57 |
56
|
necon3bbid |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ¬ 𝑥 = 0 ↔ 𝑥 ≠ 0 ) ) |
58 |
57
|
pm5.74i |
⊢ ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ¬ 𝑥 = 0 ) ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ≠ 0 ) ) |
59 |
55 58
|
sylib |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ≠ 0 ) ) |
60 |
59
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ≠ 0 ) |
61 |
21 60
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
62 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℝ ) |
63 |
11 62 60
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 1 / 𝑥 ) ∈ ℝ ) |
64 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( log ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( log ‘ 𝑥 ) ) |
65 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / 𝑥 ) ) |
66 |
1 2 3 4 64 65
|
dvrelog3 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / 𝑥 ) ) ) |
67 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
68 |
9
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
69 |
67 68
|
logcld |
⊢ ( 𝜑 → ( log ‘ 2 ) ∈ ℂ ) |
70 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
71 |
|
2rp |
⊢ 2 ∈ ℝ+ |
72 |
|
loggt0b |
⊢ ( 2 ∈ ℝ+ → ( 0 < ( log ‘ 2 ) ↔ 1 < 2 ) ) |
73 |
71 72
|
ax-mp |
⊢ ( 0 < ( log ‘ 2 ) ↔ 1 < 2 ) |
74 |
12 73
|
mpbir |
⊢ 0 < ( log ‘ 2 ) |
75 |
74
|
a1i |
⊢ ( 𝜑 → 0 < ( log ‘ 2 ) ) |
76 |
70 75
|
ltned |
⊢ ( 𝜑 → 0 ≠ ( log ‘ 2 ) ) |
77 |
76
|
necomd |
⊢ ( 𝜑 → ( log ‘ 2 ) ≠ 0 ) |
78 |
53 61 63 66 69 77
|
dvmptdivc |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 1 / 𝑥 ) / ( log ‘ 2 ) ) ) ) |
79 |
8 10
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( log ‘ 2 ) ∈ ℂ ) |
80 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( log ‘ 2 ) ≠ 0 ) |
81 |
21 79 60 80
|
recdiv2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 1 / 𝑥 ) / ( log ‘ 2 ) ) = ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) |
82 |
81
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 1 / 𝑥 ) / ( log ‘ 2 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) ) |
83 |
6
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) ) |
84 |
83
|
eqcomd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) = 𝐺 ) |
85 |
82 84
|
eqtrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 1 / 𝑥 ) / ( log ‘ 2 ) ) ) = 𝐺 ) |
86 |
78 85
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 2 ) ) ) ) = 𝐺 ) |
87 |
51 86
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = 𝐺 ) |