Step |
Hyp |
Ref |
Expression |
1 |
|
dvrelog2b.1 |
|- ( ph -> A e. RR* ) |
2 |
|
dvrelog2b.2 |
|- ( ph -> B e. RR* ) |
3 |
|
dvrelog2b.3 |
|- ( ph -> 0 <_ A ) |
4 |
|
dvrelog2b.4 |
|- ( ph -> A <_ B ) |
5 |
|
dvrelog2b.5 |
|- F = ( x e. ( A (,) B ) |-> ( 2 logb x ) ) |
6 |
|
dvrelog2b.6 |
|- G = ( x e. ( A (,) B ) |-> ( 1 / ( x x. ( log ` 2 ) ) ) ) |
7 |
5
|
a1i |
|- ( ph -> F = ( x e. ( A (,) B ) |-> ( 2 logb x ) ) ) |
8 |
|
2cnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 e. CC ) |
9 |
|
2ne0 |
|- 2 =/= 0 |
10 |
9
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 =/= 0 ) |
11 |
|
1red |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 e. RR ) |
12 |
|
1lt2 |
|- 1 < 2 |
13 |
12
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 < 2 ) |
14 |
11 13
|
ltned |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 =/= 2 ) |
15 |
14
|
necomd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 =/= 1 ) |
16 |
10 15
|
nelprd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. 2 e. { 0 , 1 } ) |
17 |
8 16
|
eldifd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 e. ( CC \ { 0 , 1 } ) ) |
18 |
|
elioore |
|- ( x e. ( A (,) B ) -> x e. RR ) |
19 |
|
recn |
|- ( x e. RR -> x e. CC ) |
20 |
18 19
|
syl |
|- ( x e. ( A (,) B ) -> x e. CC ) |
21 |
20
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. CC ) |
22 |
|
elsni |
|- ( x e. { 0 } -> x = 0 ) |
23 |
|
0xr |
|- 0 e. RR* |
24 |
23
|
a1i |
|- ( ph -> 0 e. RR* ) |
25 |
|
xrlenlt |
|- ( ( 0 e. RR* /\ A e. RR* ) -> ( 0 <_ A <-> -. A < 0 ) ) |
26 |
24 1 25
|
syl2anc |
|- ( ph -> ( 0 <_ A <-> -. A < 0 ) ) |
27 |
3 26
|
mpbid |
|- ( ph -> -. A < 0 ) |
28 |
27
|
orcd |
|- ( ph -> ( -. A < 0 \/ -. 0 < B ) ) |
29 |
|
ianor |
|- ( -. ( A < 0 /\ 0 < B ) <-> ( -. A < 0 \/ -. 0 < B ) ) |
30 |
28 29
|
sylibr |
|- ( ph -> -. ( A < 0 /\ 0 < B ) ) |
31 |
|
elioo5 |
|- ( ( A e. RR* /\ B e. RR* /\ 0 e. RR* ) -> ( 0 e. ( A (,) B ) <-> ( A < 0 /\ 0 < B ) ) ) |
32 |
1 2 24 31
|
syl3anc |
|- ( ph -> ( 0 e. ( A (,) B ) <-> ( A < 0 /\ 0 < B ) ) ) |
33 |
32
|
notbid |
|- ( ph -> ( -. 0 e. ( A (,) B ) <-> -. ( A < 0 /\ 0 < B ) ) ) |
34 |
30 33
|
mpbird |
|- ( ph -> -. 0 e. ( A (,) B ) ) |
35 |
34
|
a1d |
|- ( ph -> ( 0 e. ( A (,) B ) -> -. 0 e. ( A (,) B ) ) ) |
36 |
35
|
imp |
|- ( ( ph /\ 0 e. ( A (,) B ) ) -> -. 0 e. ( A (,) B ) ) |
37 |
36
|
pm2.01da |
|- ( ph -> -. 0 e. ( A (,) B ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ x = 0 ) -> -. 0 e. ( A (,) B ) ) |
39 |
|
eleq1 |
|- ( x = 0 -> ( x e. ( A (,) B ) <-> 0 e. ( A (,) B ) ) ) |
40 |
39
|
adantl |
|- ( ( ph /\ x = 0 ) -> ( x e. ( A (,) B ) <-> 0 e. ( A (,) B ) ) ) |
41 |
38 40
|
mtbird |
|- ( ( ph /\ x = 0 ) -> -. x e. ( A (,) B ) ) |
42 |
22 41
|
sylan2 |
|- ( ( ph /\ x e. { 0 } ) -> -. x e. ( A (,) B ) ) |
43 |
42
|
ex |
|- ( ph -> ( x e. { 0 } -> -. x e. ( A (,) B ) ) ) |
44 |
43
|
con2d |
|- ( ph -> ( x e. ( A (,) B ) -> -. x e. { 0 } ) ) |
45 |
44
|
imp |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. x e. { 0 } ) |
46 |
21 45
|
eldifd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( CC \ { 0 } ) ) |
47 |
|
logbval |
|- ( ( 2 e. ( CC \ { 0 , 1 } ) /\ x e. ( CC \ { 0 } ) ) -> ( 2 logb x ) = ( ( log ` x ) / ( log ` 2 ) ) ) |
48 |
17 46 47
|
syl2anc |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 2 logb x ) = ( ( log ` x ) / ( log ` 2 ) ) ) |
49 |
48
|
mpteq2dva |
|- ( ph -> ( x e. ( A (,) B ) |-> ( 2 logb x ) ) = ( x e. ( A (,) B ) |-> ( ( log ` x ) / ( log ` 2 ) ) ) ) |
50 |
7 49
|
eqtrd |
|- ( ph -> F = ( x e. ( A (,) B ) |-> ( ( log ` x ) / ( log ` 2 ) ) ) ) |
51 |
50
|
oveq2d |
|- ( ph -> ( RR _D F ) = ( RR _D ( x e. ( A (,) B ) |-> ( ( log ` x ) / ( log ` 2 ) ) ) ) ) |
52 |
|
reelprrecn |
|- RR e. { RR , CC } |
53 |
52
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
54 |
41
|
ex |
|- ( ph -> ( x = 0 -> -. x e. ( A (,) B ) ) ) |
55 |
54
|
con2d |
|- ( ph -> ( x e. ( A (,) B ) -> -. x = 0 ) ) |
56 |
|
biidd |
|- ( x e. ( A (,) B ) -> ( x = 0 <-> x = 0 ) ) |
57 |
56
|
necon3bbid |
|- ( x e. ( A (,) B ) -> ( -. x = 0 <-> x =/= 0 ) ) |
58 |
57
|
pm5.74i |
|- ( ( x e. ( A (,) B ) -> -. x = 0 ) <-> ( x e. ( A (,) B ) -> x =/= 0 ) ) |
59 |
55 58
|
sylib |
|- ( ph -> ( x e. ( A (,) B ) -> x =/= 0 ) ) |
60 |
59
|
imp |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= 0 ) |
61 |
21 60
|
logcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( log ` x ) e. CC ) |
62 |
18
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. RR ) |
63 |
11 62 60
|
redivcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 1 / x ) e. RR ) |
64 |
|
eqid |
|- ( x e. ( A (,) B ) |-> ( log ` x ) ) = ( x e. ( A (,) B ) |-> ( log ` x ) ) |
65 |
|
eqid |
|- ( x e. ( A (,) B ) |-> ( 1 / x ) ) = ( x e. ( A (,) B ) |-> ( 1 / x ) ) |
66 |
1 2 3 4 64 65
|
dvrelog3 |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( log ` x ) ) ) = ( x e. ( A (,) B ) |-> ( 1 / x ) ) ) |
67 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
68 |
9
|
a1i |
|- ( ph -> 2 =/= 0 ) |
69 |
67 68
|
logcld |
|- ( ph -> ( log ` 2 ) e. CC ) |
70 |
|
0red |
|- ( ph -> 0 e. RR ) |
71 |
|
2rp |
|- 2 e. RR+ |
72 |
|
loggt0b |
|- ( 2 e. RR+ -> ( 0 < ( log ` 2 ) <-> 1 < 2 ) ) |
73 |
71 72
|
ax-mp |
|- ( 0 < ( log ` 2 ) <-> 1 < 2 ) |
74 |
12 73
|
mpbir |
|- 0 < ( log ` 2 ) |
75 |
74
|
a1i |
|- ( ph -> 0 < ( log ` 2 ) ) |
76 |
70 75
|
ltned |
|- ( ph -> 0 =/= ( log ` 2 ) ) |
77 |
76
|
necomd |
|- ( ph -> ( log ` 2 ) =/= 0 ) |
78 |
53 61 63 66 69 77
|
dvmptdivc |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( ( log ` x ) / ( log ` 2 ) ) ) ) = ( x e. ( A (,) B ) |-> ( ( 1 / x ) / ( log ` 2 ) ) ) ) |
79 |
8 10
|
logcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( log ` 2 ) e. CC ) |
80 |
77
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( log ` 2 ) =/= 0 ) |
81 |
21 79 60 80
|
recdiv2d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( 1 / x ) / ( log ` 2 ) ) = ( 1 / ( x x. ( log ` 2 ) ) ) ) |
82 |
81
|
mpteq2dva |
|- ( ph -> ( x e. ( A (,) B ) |-> ( ( 1 / x ) / ( log ` 2 ) ) ) = ( x e. ( A (,) B ) |-> ( 1 / ( x x. ( log ` 2 ) ) ) ) ) |
83 |
6
|
a1i |
|- ( ph -> G = ( x e. ( A (,) B ) |-> ( 1 / ( x x. ( log ` 2 ) ) ) ) ) |
84 |
83
|
eqcomd |
|- ( ph -> ( x e. ( A (,) B ) |-> ( 1 / ( x x. ( log ` 2 ) ) ) ) = G ) |
85 |
82 84
|
eqtrd |
|- ( ph -> ( x e. ( A (,) B ) |-> ( ( 1 / x ) / ( log ` 2 ) ) ) = G ) |
86 |
78 85
|
eqtrd |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( ( log ` x ) / ( log ` 2 ) ) ) ) = G ) |
87 |
51 86
|
eqtrd |
|- ( ph -> ( RR _D F ) = G ) |