Step |
Hyp |
Ref |
Expression |
1 |
|
elioo1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR* /\ A < C /\ C < B ) ) ) |
2 |
1
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR* /\ A < C /\ C < B ) ) ) |
3 |
|
3anass |
|- ( ( C e. RR* /\ A < C /\ C < B ) <-> ( C e. RR* /\ ( A < C /\ C < B ) ) ) |
4 |
3
|
baibr |
|- ( C e. RR* -> ( ( A < C /\ C < B ) <-> ( C e. RR* /\ A < C /\ C < B ) ) ) |
5 |
4
|
3ad2ant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < C /\ C < B ) <-> ( C e. RR* /\ A < C /\ C < B ) ) ) |
6 |
2 5
|
bitr4d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A (,) B ) <-> ( A < C /\ C < B ) ) ) |