| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
⊢ { ∅ } ⊆ { ∅ } |
| 2 |
|
fvex |
⊢ ( EndoFMnd ‘ ∅ ) ∈ V |
| 3 |
|
p0ex |
⊢ { ∅ } ∈ V |
| 4 |
|
eqid |
⊢ ( SymGrp ‘ ∅ ) = ( SymGrp ‘ ∅ ) |
| 5 |
|
symgbas0 |
⊢ ( Base ‘ ( SymGrp ‘ ∅ ) ) = { ∅ } |
| 6 |
5
|
eqcomi |
⊢ { ∅ } = ( Base ‘ ( SymGrp ‘ ∅ ) ) |
| 7 |
|
eqid |
⊢ ( EndoFMnd ‘ ∅ ) = ( EndoFMnd ‘ ∅ ) |
| 8 |
4 6 7
|
symgressbas |
⊢ ( SymGrp ‘ ∅ ) = ( ( EndoFMnd ‘ ∅ ) ↾s { ∅ } ) |
| 9 |
|
efmndbas0 |
⊢ ( Base ‘ ( EndoFMnd ‘ ∅ ) ) = { ∅ } |
| 10 |
9
|
eqcomi |
⊢ { ∅ } = ( Base ‘ ( EndoFMnd ‘ ∅ ) ) |
| 11 |
8 10
|
ressid2 |
⊢ ( ( { ∅ } ⊆ { ∅ } ∧ ( EndoFMnd ‘ ∅ ) ∈ V ∧ { ∅ } ∈ V ) → ( SymGrp ‘ ∅ ) = ( EndoFMnd ‘ ∅ ) ) |
| 12 |
1 2 3 11
|
mp3an |
⊢ ( SymGrp ‘ ∅ ) = ( EndoFMnd ‘ ∅ ) |
| 13 |
12
|
eqcomi |
⊢ ( EndoFMnd ‘ ∅ ) = ( SymGrp ‘ ∅ ) |