Metamath Proof Explorer


Theorem 0symgefmndeq

Description: The symmetric group on the empty set is identical with the monoid of endofunctions on the empty set. (Contributed by AV, 30-Mar-2024)

Ref Expression
Assertion 0symgefmndeq Could not format assertion : No typesetting found for |- ( EndoFMnd ` (/) ) = ( SymGrp ` (/) ) with typecode |-

Proof

Step Hyp Ref Expression
1 ssid
2 fvex Could not format ( EndoFMnd ` (/) ) e. _V : No typesetting found for |- ( EndoFMnd ` (/) ) e. _V with typecode |-
3 p0ex V
4 eqid SymGrp = SymGrp
5 symgbas0 Base SymGrp =
6 5 eqcomi = Base SymGrp
7 eqid Could not format ( EndoFMnd ` (/) ) = ( EndoFMnd ` (/) ) : No typesetting found for |- ( EndoFMnd ` (/) ) = ( EndoFMnd ` (/) ) with typecode |-
8 4 6 7 symgressbas Could not format ( SymGrp ` (/) ) = ( ( EndoFMnd ` (/) ) |`s { (/) } ) : No typesetting found for |- ( SymGrp ` (/) ) = ( ( EndoFMnd ` (/) ) |`s { (/) } ) with typecode |-
9 efmndbas0 Could not format ( Base ` ( EndoFMnd ` (/) ) ) = { (/) } : No typesetting found for |- ( Base ` ( EndoFMnd ` (/) ) ) = { (/) } with typecode |-
10 9 eqcomi Could not format { (/) } = ( Base ` ( EndoFMnd ` (/) ) ) : No typesetting found for |- { (/) } = ( Base ` ( EndoFMnd ` (/) ) ) with typecode |-
11 8 10 ressid2 Could not format ( ( { (/) } C_ { (/) } /\ ( EndoFMnd ` (/) ) e. _V /\ { (/) } e. _V ) -> ( SymGrp ` (/) ) = ( EndoFMnd ` (/) ) ) : No typesetting found for |- ( ( { (/) } C_ { (/) } /\ ( EndoFMnd ` (/) ) e. _V /\ { (/) } e. _V ) -> ( SymGrp ` (/) ) = ( EndoFMnd ` (/) ) ) with typecode |-
12 1 2 3 11 mp3an Could not format ( SymGrp ` (/) ) = ( EndoFMnd ` (/) ) : No typesetting found for |- ( SymGrp ` (/) ) = ( EndoFMnd ` (/) ) with typecode |-
13 12 eqcomi Could not format ( EndoFMnd ` (/) ) = ( SymGrp ` (/) ) : No typesetting found for |- ( EndoFMnd ` (/) ) = ( SymGrp ` (/) ) with typecode |-