Step |
Hyp |
Ref |
Expression |
1 |
|
ssidd |
⊢ ( 𝑋 ∈ V → { { 〈 𝑋 , 𝑋 〉 } } ⊆ { { 〈 𝑋 , 𝑋 〉 } } ) |
2 |
|
eqid |
⊢ ( EndoFMnd ‘ { 𝑋 } ) = ( EndoFMnd ‘ { 𝑋 } ) |
3 |
|
eqid |
⊢ ( Base ‘ ( EndoFMnd ‘ { 𝑋 } ) ) = ( Base ‘ ( EndoFMnd ‘ { 𝑋 } ) ) |
4 |
|
eqid |
⊢ { 𝑋 } = { 𝑋 } |
5 |
2 3 4
|
efmnd1bas |
⊢ ( 𝑋 ∈ V → ( Base ‘ ( EndoFMnd ‘ { 𝑋 } ) ) = { { 〈 𝑋 , 𝑋 〉 } } ) |
6 |
|
eqid |
⊢ ( SymGrp ‘ { 𝑋 } ) = ( SymGrp ‘ { 𝑋 } ) |
7 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) = ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) |
8 |
6 7 4
|
symg1bas |
⊢ ( 𝑋 ∈ V → ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) = { { 〈 𝑋 , 𝑋 〉 } } ) |
9 |
1 5 8
|
3sstr4d |
⊢ ( 𝑋 ∈ V → ( Base ‘ ( EndoFMnd ‘ { 𝑋 } ) ) ⊆ ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) ) |
10 |
|
fvexd |
⊢ ( 𝑋 ∈ V → ( EndoFMnd ‘ { 𝑋 } ) ∈ V ) |
11 |
|
fvexd |
⊢ ( 𝑋 ∈ V → ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) ∈ V ) |
12 |
6 7 2
|
symgressbas |
⊢ ( SymGrp ‘ { 𝑋 } ) = ( ( EndoFMnd ‘ { 𝑋 } ) ↾s ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) ) |
13 |
12 3
|
ressid2 |
⊢ ( ( ( Base ‘ ( EndoFMnd ‘ { 𝑋 } ) ) ⊆ ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) ∧ ( EndoFMnd ‘ { 𝑋 } ) ∈ V ∧ ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) ∈ V ) → ( SymGrp ‘ { 𝑋 } ) = ( EndoFMnd ‘ { 𝑋 } ) ) |
14 |
9 10 11 13
|
syl3anc |
⊢ ( 𝑋 ∈ V → ( SymGrp ‘ { 𝑋 } ) = ( EndoFMnd ‘ { 𝑋 } ) ) |
15 |
14
|
eqcomd |
⊢ ( 𝑋 ∈ V → ( EndoFMnd ‘ { 𝑋 } ) = ( SymGrp ‘ { 𝑋 } ) ) |
16 |
|
fveq2 |
⊢ ( 𝐴 = { 𝑋 } → ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ { 𝑋 } ) ) |
17 |
|
fveq2 |
⊢ ( 𝐴 = { 𝑋 } → ( SymGrp ‘ 𝐴 ) = ( SymGrp ‘ { 𝑋 } ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝐴 = { 𝑋 } → ( ( EndoFMnd ‘ 𝐴 ) = ( SymGrp ‘ 𝐴 ) ↔ ( EndoFMnd ‘ { 𝑋 } ) = ( SymGrp ‘ { 𝑋 } ) ) ) |
19 |
15 18
|
syl5ibrcom |
⊢ ( 𝑋 ∈ V → ( 𝐴 = { 𝑋 } → ( EndoFMnd ‘ 𝐴 ) = ( SymGrp ‘ 𝐴 ) ) ) |
20 |
|
snprc |
⊢ ( ¬ 𝑋 ∈ V ↔ { 𝑋 } = ∅ ) |
21 |
20
|
biimpi |
⊢ ( ¬ 𝑋 ∈ V → { 𝑋 } = ∅ ) |
22 |
21
|
eqeq2d |
⊢ ( ¬ 𝑋 ∈ V → ( 𝐴 = { 𝑋 } ↔ 𝐴 = ∅ ) ) |
23 |
|
0symgefmndeq |
⊢ ( EndoFMnd ‘ ∅ ) = ( SymGrp ‘ ∅ ) |
24 |
|
fveq2 |
⊢ ( 𝐴 = ∅ → ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ ∅ ) ) |
25 |
|
fveq2 |
⊢ ( 𝐴 = ∅ → ( SymGrp ‘ 𝐴 ) = ( SymGrp ‘ ∅ ) ) |
26 |
23 24 25
|
3eqtr4a |
⊢ ( 𝐴 = ∅ → ( EndoFMnd ‘ 𝐴 ) = ( SymGrp ‘ 𝐴 ) ) |
27 |
22 26
|
syl6bi |
⊢ ( ¬ 𝑋 ∈ V → ( 𝐴 = { 𝑋 } → ( EndoFMnd ‘ 𝐴 ) = ( SymGrp ‘ 𝐴 ) ) ) |
28 |
19 27
|
pm2.61i |
⊢ ( 𝐴 = { 𝑋 } → ( EndoFMnd ‘ 𝐴 ) = ( SymGrp ‘ 𝐴 ) ) |