| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgpssefmnd.m | ⊢ 𝑀  =  ( EndoFMnd ‘ 𝐴 ) | 
						
							| 2 |  | symgpssefmnd.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐴 ) | 
						
							| 3 |  | hashgt12el | ⊢ ( ( 𝐴  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝐴 ) )  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ≠  𝑦 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 5 | 2 4 | symgbasmap | ⊢ ( 𝑥  ∈  ( Base ‘ 𝐺 )  →  𝑥  ∈  ( 𝐴  ↑m  𝐴 ) ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 7 | 1 6 | efmndbas | ⊢ ( Base ‘ 𝑀 )  =  ( 𝐴  ↑m  𝐴 ) | 
						
							| 8 | 5 7 | eleqtrrdi | ⊢ ( 𝑥  ∈  ( Base ‘ 𝐺 )  →  𝑥  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 9 | 8 | ssriv | ⊢ ( Base ‘ 𝐺 )  ⊆  ( Base ‘ 𝑀 ) | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ≠  𝑦 )  →  ( Base ‘ 𝐺 )  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 11 |  | fconst6g | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝐴  ×  { 𝑥 } ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝐴  ×  { 𝑥 } ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ≠  𝑦 )  →  ( 𝐴  ×  { 𝑥 } ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 14 | 1 6 | elefmndbas | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝐴  ×  { 𝑥 } )  ∈  ( Base ‘ 𝑀 )  ↔  ( 𝐴  ×  { 𝑥 } ) : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝐴  ×  { 𝑥 } )  ∈  ( Base ‘ 𝑀 )  ↔  ( 𝐴  ×  { 𝑥 } ) : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 16 | 13 15 | mpbird | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ≠  𝑦 )  →  ( 𝐴  ×  { 𝑥 } )  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 17 |  | fconstg | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝐴  ×  { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝐴  ×  { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } ) | 
						
							| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ≠  𝑦 )  →  ( 𝐴  ×  { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } ) | 
						
							| 20 |  | id | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴  ∧  𝑥  ≠  𝑦 )  →  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 21 | 20 | 3expa | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 22 | 21 | 3adant1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 23 |  | nf1oconst | ⊢ ( ( ( 𝐴  ×  { 𝑥 } ) : 𝐴 ⟶ { 𝑥 }  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴  ∧  𝑥  ≠  𝑦 ) )  →  ¬  ( 𝐴  ×  { 𝑥 } ) : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 24 | 19 22 23 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ≠  𝑦 )  →  ¬  ( 𝐴  ×  { 𝑥 } ) : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 25 | 2 4 | elsymgbas | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝐴  ×  { 𝑥 } )  ∈  ( Base ‘ 𝐺 )  ↔  ( 𝐴  ×  { 𝑥 } ) : 𝐴 –1-1-onto→ 𝐴 ) ) | 
						
							| 26 | 25 | notbid | ⊢ ( 𝐴  ∈  𝑉  →  ( ¬  ( 𝐴  ×  { 𝑥 } )  ∈  ( Base ‘ 𝐺 )  ↔  ¬  ( 𝐴  ×  { 𝑥 } ) : 𝐴 –1-1-onto→ 𝐴 ) ) | 
						
							| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ≠  𝑦 )  →  ( ¬  ( 𝐴  ×  { 𝑥 } )  ∈  ( Base ‘ 𝐺 )  ↔  ¬  ( 𝐴  ×  { 𝑥 } ) : 𝐴 –1-1-onto→ 𝐴 ) ) | 
						
							| 28 | 24 27 | mpbird | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ≠  𝑦 )  →  ¬  ( 𝐴  ×  { 𝑥 } )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 29 | 10 16 28 | ssnelpssd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ≠  𝑦 )  →  ( Base ‘ 𝐺 )  ⊊  ( Base ‘ 𝑀 ) ) | 
						
							| 30 | 29 | 3exp | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  ≠  𝑦  →  ( Base ‘ 𝐺 )  ⊊  ( Base ‘ 𝑀 ) ) ) ) | 
						
							| 31 | 30 | rexlimdvv | ⊢ ( 𝐴  ∈  𝑉  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ≠  𝑦  →  ( Base ‘ 𝐺 )  ⊊  ( Base ‘ 𝑀 ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝐴 ) )  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ≠  𝑦  →  ( Base ‘ 𝐺 )  ⊊  ( Base ‘ 𝑀 ) ) ) | 
						
							| 33 | 3 32 | mpd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝐴 ) )  →  ( Base ‘ 𝐺 )  ⊊  ( Base ‘ 𝑀 ) ) |