Step |
Hyp |
Ref |
Expression |
1 |
|
symgpssefmnd.m |
|- M = ( EndoFMnd ` A ) |
2 |
|
symgpssefmnd.g |
|- G = ( SymGrp ` A ) |
3 |
|
hashgt12el |
|- ( ( A e. V /\ 1 < ( # ` A ) ) -> E. x e. A E. y e. A x =/= y ) |
4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
5 |
2 4
|
symgbasmap |
|- ( x e. ( Base ` G ) -> x e. ( A ^m A ) ) |
6 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
7 |
1 6
|
efmndbas |
|- ( Base ` M ) = ( A ^m A ) |
8 |
5 7
|
eleqtrrdi |
|- ( x e. ( Base ` G ) -> x e. ( Base ` M ) ) |
9 |
8
|
ssriv |
|- ( Base ` G ) C_ ( Base ` M ) |
10 |
9
|
a1i |
|- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( Base ` G ) C_ ( Base ` M ) ) |
11 |
|
fconst6g |
|- ( x e. A -> ( A X. { x } ) : A --> A ) |
12 |
11
|
adantr |
|- ( ( x e. A /\ y e. A ) -> ( A X. { x } ) : A --> A ) |
13 |
12
|
3ad2ant2 |
|- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( A X. { x } ) : A --> A ) |
14 |
1 6
|
elefmndbas |
|- ( A e. V -> ( ( A X. { x } ) e. ( Base ` M ) <-> ( A X. { x } ) : A --> A ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( ( A X. { x } ) e. ( Base ` M ) <-> ( A X. { x } ) : A --> A ) ) |
16 |
13 15
|
mpbird |
|- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( A X. { x } ) e. ( Base ` M ) ) |
17 |
|
fconstg |
|- ( x e. A -> ( A X. { x } ) : A --> { x } ) |
18 |
17
|
adantr |
|- ( ( x e. A /\ y e. A ) -> ( A X. { x } ) : A --> { x } ) |
19 |
18
|
3ad2ant2 |
|- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( A X. { x } ) : A --> { x } ) |
20 |
|
id |
|- ( ( x e. A /\ y e. A /\ x =/= y ) -> ( x e. A /\ y e. A /\ x =/= y ) ) |
21 |
20
|
3expa |
|- ( ( ( x e. A /\ y e. A ) /\ x =/= y ) -> ( x e. A /\ y e. A /\ x =/= y ) ) |
22 |
21
|
3adant1 |
|- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( x e. A /\ y e. A /\ x =/= y ) ) |
23 |
|
nf1oconst |
|- ( ( ( A X. { x } ) : A --> { x } /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> -. ( A X. { x } ) : A -1-1-onto-> A ) |
24 |
19 22 23
|
syl2anc |
|- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> -. ( A X. { x } ) : A -1-1-onto-> A ) |
25 |
2 4
|
elsymgbas |
|- ( A e. V -> ( ( A X. { x } ) e. ( Base ` G ) <-> ( A X. { x } ) : A -1-1-onto-> A ) ) |
26 |
25
|
notbid |
|- ( A e. V -> ( -. ( A X. { x } ) e. ( Base ` G ) <-> -. ( A X. { x } ) : A -1-1-onto-> A ) ) |
27 |
26
|
3ad2ant1 |
|- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( -. ( A X. { x } ) e. ( Base ` G ) <-> -. ( A X. { x } ) : A -1-1-onto-> A ) ) |
28 |
24 27
|
mpbird |
|- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> -. ( A X. { x } ) e. ( Base ` G ) ) |
29 |
10 16 28
|
ssnelpssd |
|- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( Base ` G ) C. ( Base ` M ) ) |
30 |
29
|
3exp |
|- ( A e. V -> ( ( x e. A /\ y e. A ) -> ( x =/= y -> ( Base ` G ) C. ( Base ` M ) ) ) ) |
31 |
30
|
rexlimdvv |
|- ( A e. V -> ( E. x e. A E. y e. A x =/= y -> ( Base ` G ) C. ( Base ` M ) ) ) |
32 |
31
|
adantr |
|- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( E. x e. A E. y e. A x =/= y -> ( Base ` G ) C. ( Base ` M ) ) ) |
33 |
3 32
|
mpd |
|- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( Base ` G ) C. ( Base ` M ) ) |