Metamath Proof Explorer


Theorem symgpssefmnd

Description: For a set A with more than one element, the symmetric group on A is a proper subset of the monoid of endofunctions on A . (Contributed by AV, 31-Mar-2024)

Ref Expression
Hypotheses symgpssefmnd.m No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |-
symgpssefmnd.g G=SymGrpA
Assertion symgpssefmnd AV1<ABaseGBaseM

Proof

Step Hyp Ref Expression
1 symgpssefmnd.m Could not format M = ( EndoFMnd ` A ) : No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |-
2 symgpssefmnd.g G=SymGrpA
3 hashgt12el AV1<AxAyAxy
4 eqid BaseG=BaseG
5 2 4 symgbasmap xBaseGxAA
6 eqid BaseM=BaseM
7 1 6 efmndbas BaseM=AA
8 5 7 eleqtrrdi xBaseGxBaseM
9 8 ssriv BaseGBaseM
10 9 a1i AVxAyAxyBaseGBaseM
11 fconst6g xAA×x:AA
12 11 adantr xAyAA×x:AA
13 12 3ad2ant2 AVxAyAxyA×x:AA
14 1 6 elefmndbas AVA×xBaseMA×x:AA
15 14 3ad2ant1 AVxAyAxyA×xBaseMA×x:AA
16 13 15 mpbird AVxAyAxyA×xBaseM
17 fconstg xAA×x:Ax
18 17 adantr xAyAA×x:Ax
19 18 3ad2ant2 AVxAyAxyA×x:Ax
20 id xAyAxyxAyAxy
21 20 3expa xAyAxyxAyAxy
22 21 3adant1 AVxAyAxyxAyAxy
23 nf1oconst A×x:AxxAyAxy¬A×x:A1-1 ontoA
24 19 22 23 syl2anc AVxAyAxy¬A×x:A1-1 ontoA
25 2 4 elsymgbas AVA×xBaseGA×x:A1-1 ontoA
26 25 notbid AV¬A×xBaseG¬A×x:A1-1 ontoA
27 26 3ad2ant1 AVxAyAxy¬A×xBaseG¬A×x:A1-1 ontoA
28 24 27 mpbird AVxAyAxy¬A×xBaseG
29 10 16 28 ssnelpssd AVxAyAxyBaseGBaseM
30 29 3exp AVxAyAxyBaseGBaseM
31 30 rexlimdvv AVxAyAxyBaseGBaseM
32 31 adantr AV1<AxAyAxyBaseGBaseM
33 3 32 mpd AV1<ABaseGBaseM