Description: For a set A with more than one element, the symmetric group on A is a proper subset of the monoid of endofunctions on A . (Contributed by AV, 31-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgpssefmnd.m | No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |- | |
symgpssefmnd.g | |
||
Assertion | symgpssefmnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgpssefmnd.m | Could not format M = ( EndoFMnd ` A ) : No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |- | |
2 | symgpssefmnd.g | |
|
3 | hashgt12el | |
|
4 | eqid | |
|
5 | 2 4 | symgbasmap | |
6 | eqid | |
|
7 | 1 6 | efmndbas | |
8 | 5 7 | eleqtrrdi | |
9 | 8 | ssriv | |
10 | 9 | a1i | |
11 | fconst6g | |
|
12 | 11 | adantr | |
13 | 12 | 3ad2ant2 | |
14 | 1 6 | elefmndbas | |
15 | 14 | 3ad2ant1 | |
16 | 13 15 | mpbird | |
17 | fconstg | |
|
18 | 17 | adantr | |
19 | 18 | 3ad2ant2 | |
20 | id | |
|
21 | 20 | 3expa | |
22 | 21 | 3adant1 | |
23 | nf1oconst | |
|
24 | 19 22 23 | syl2anc | |
25 | 2 4 | elsymgbas | |
26 | 25 | notbid | |
27 | 26 | 3ad2ant1 | |
28 | 24 27 | mpbird | |
29 | 10 16 28 | ssnelpssd | |
30 | 29 | 3exp | |
31 | 30 | rexlimdvv | |
32 | 31 | adantr | |
33 | 3 32 | mpd | |