| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssidd |  |-  ( X e. _V -> { { <. X , X >. } } C_ { { <. X , X >. } } ) | 
						
							| 2 |  | eqid |  |-  ( EndoFMnd ` { X } ) = ( EndoFMnd ` { X } ) | 
						
							| 3 |  | eqid |  |-  ( Base ` ( EndoFMnd ` { X } ) ) = ( Base ` ( EndoFMnd ` { X } ) ) | 
						
							| 4 |  | eqid |  |-  { X } = { X } | 
						
							| 5 | 2 3 4 | efmnd1bas |  |-  ( X e. _V -> ( Base ` ( EndoFMnd ` { X } ) ) = { { <. X , X >. } } ) | 
						
							| 6 |  | eqid |  |-  ( SymGrp ` { X } ) = ( SymGrp ` { X } ) | 
						
							| 7 |  | eqid |  |-  ( Base ` ( SymGrp ` { X } ) ) = ( Base ` ( SymGrp ` { X } ) ) | 
						
							| 8 | 6 7 4 | symg1bas |  |-  ( X e. _V -> ( Base ` ( SymGrp ` { X } ) ) = { { <. X , X >. } } ) | 
						
							| 9 | 1 5 8 | 3sstr4d |  |-  ( X e. _V -> ( Base ` ( EndoFMnd ` { X } ) ) C_ ( Base ` ( SymGrp ` { X } ) ) ) | 
						
							| 10 |  | fvexd |  |-  ( X e. _V -> ( EndoFMnd ` { X } ) e. _V ) | 
						
							| 11 |  | fvexd |  |-  ( X e. _V -> ( Base ` ( SymGrp ` { X } ) ) e. _V ) | 
						
							| 12 | 6 7 2 | symgressbas |  |-  ( SymGrp ` { X } ) = ( ( EndoFMnd ` { X } ) |`s ( Base ` ( SymGrp ` { X } ) ) ) | 
						
							| 13 | 12 3 | ressid2 |  |-  ( ( ( Base ` ( EndoFMnd ` { X } ) ) C_ ( Base ` ( SymGrp ` { X } ) ) /\ ( EndoFMnd ` { X } ) e. _V /\ ( Base ` ( SymGrp ` { X } ) ) e. _V ) -> ( SymGrp ` { X } ) = ( EndoFMnd ` { X } ) ) | 
						
							| 14 | 9 10 11 13 | syl3anc |  |-  ( X e. _V -> ( SymGrp ` { X } ) = ( EndoFMnd ` { X } ) ) | 
						
							| 15 | 14 | eqcomd |  |-  ( X e. _V -> ( EndoFMnd ` { X } ) = ( SymGrp ` { X } ) ) | 
						
							| 16 |  | fveq2 |  |-  ( A = { X } -> ( EndoFMnd ` A ) = ( EndoFMnd ` { X } ) ) | 
						
							| 17 |  | fveq2 |  |-  ( A = { X } -> ( SymGrp ` A ) = ( SymGrp ` { X } ) ) | 
						
							| 18 | 16 17 | eqeq12d |  |-  ( A = { X } -> ( ( EndoFMnd ` A ) = ( SymGrp ` A ) <-> ( EndoFMnd ` { X } ) = ( SymGrp ` { X } ) ) ) | 
						
							| 19 | 15 18 | syl5ibrcom |  |-  ( X e. _V -> ( A = { X } -> ( EndoFMnd ` A ) = ( SymGrp ` A ) ) ) | 
						
							| 20 |  | snprc |  |-  ( -. X e. _V <-> { X } = (/) ) | 
						
							| 21 | 20 | biimpi |  |-  ( -. X e. _V -> { X } = (/) ) | 
						
							| 22 | 21 | eqeq2d |  |-  ( -. X e. _V -> ( A = { X } <-> A = (/) ) ) | 
						
							| 23 |  | 0symgefmndeq |  |-  ( EndoFMnd ` (/) ) = ( SymGrp ` (/) ) | 
						
							| 24 |  | fveq2 |  |-  ( A = (/) -> ( EndoFMnd ` A ) = ( EndoFMnd ` (/) ) ) | 
						
							| 25 |  | fveq2 |  |-  ( A = (/) -> ( SymGrp ` A ) = ( SymGrp ` (/) ) ) | 
						
							| 26 | 23 24 25 | 3eqtr4a |  |-  ( A = (/) -> ( EndoFMnd ` A ) = ( SymGrp ` A ) ) | 
						
							| 27 | 22 26 | biimtrdi |  |-  ( -. X e. _V -> ( A = { X } -> ( EndoFMnd ` A ) = ( SymGrp ` A ) ) ) | 
						
							| 28 | 19 27 | pm2.61i |  |-  ( A = { X } -> ( EndoFMnd ` A ) = ( SymGrp ` A ) ) |