| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0wlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
1
|
0wlkon |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 ) |
| 3 |
|
simpl |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) |
| 4 |
1
|
0wlkonlem1 |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |
| 5 |
1
|
1vgrex |
⊢ ( 𝑁 ∈ 𝑉 → 𝐺 ∈ V ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → 𝐺 ∈ V ) |
| 7 |
1
|
0trl |
⊢ ( 𝐺 ∈ V → ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 8 |
4 6 7
|
3syl |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 9 |
3 8
|
mpbird |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( Trails ‘ 𝐺 ) 𝑃 ) |
| 10 |
|
0ex |
⊢ ∅ ∈ V |
| 11 |
10
|
a1i |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ∈ V ) |
| 12 |
1
|
0wlkonlem2 |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 ∈ ( 𝑉 ↑pm ( 0 ... 0 ) ) ) |
| 13 |
1
|
istrlson |
⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( ∅ ∈ V ∧ 𝑃 ∈ ( 𝑉 ↑pm ( 0 ... 0 ) ) ) ) → ( ∅ ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ↔ ( ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 ∧ ∅ ( Trails ‘ 𝐺 ) 𝑃 ) ) ) |
| 14 |
4 11 12 13
|
syl12anc |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( ∅ ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ↔ ( ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 ∧ ∅ ( Trails ‘ 𝐺 ) 𝑃 ) ) ) |
| 15 |
2 9 14
|
mpbir2and |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ) |