Description: Version of 19.12vv with a disjoint variable condition, requiring fewer axioms. See also 19.12 . (Contributed by BJ, 18-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.12vvv | ⊢ ( ∃ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v | ⊢ ( ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑦 𝜓 ) ) | |
2 | 1 | exbii | ⊢ ( ∃ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ∃ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ) |
3 | 19.36v | ⊢ ( ∃ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) | |
4 | 19.36v | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → 𝜓 ) ) | |
5 | 4 | albii | ⊢ ( ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑦 ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
6 | 19.21v | ⊢ ( ∀ 𝑦 ( ∀ 𝑥 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) | |
7 | 5 6 | bitr2i | ⊢ ( ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ↔ ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) ) |
8 | 2 3 7 | 3bitri | ⊢ ( ∃ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) ) |