Step |
Hyp |
Ref |
Expression |
1 |
|
df-div |
⊢ / = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) |
2 |
|
riotaex |
⊢ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ∈ V |
3 |
1 2
|
dmmpo |
⊢ dom / = ( ℂ × ( ℂ ∖ { 0 } ) ) |
4 |
|
eqid |
⊢ 0 = 0 |
5 |
|
eldifsni |
⊢ ( 0 ∈ ( ℂ ∖ { 0 } ) → 0 ≠ 0 ) |
6 |
5
|
adantl |
⊢ ( ( 1 ∈ ℂ ∧ 0 ∈ ( ℂ ∖ { 0 } ) ) → 0 ≠ 0 ) |
7 |
6
|
necon2bi |
⊢ ( 0 = 0 → ¬ ( 1 ∈ ℂ ∧ 0 ∈ ( ℂ ∖ { 0 } ) ) ) |
8 |
4 7
|
ax-mp |
⊢ ¬ ( 1 ∈ ℂ ∧ 0 ∈ ( ℂ ∖ { 0 } ) ) |
9 |
|
ndmovg |
⊢ ( ( dom / = ( ℂ × ( ℂ ∖ { 0 } ) ) ∧ ¬ ( 1 ∈ ℂ ∧ 0 ∈ ( ℂ ∖ { 0 } ) ) ) → ( 1 / 0 ) = ∅ ) |
10 |
3 8 9
|
mp2an |
⊢ ( 1 / 0 ) = ∅ |